del_curterm, mvcur, putp, restartterm, set_curterm, setterm, setupterm, tigetflag, tigetnum, tigetstr, tiparm, tparm, tputs, vid_attr, vid_puts, vidattr, vidputscurses interfaces to terminfo database


#include <ncurses/curses.h>
#include <term.h>

int setupterm(char *term, int fildes, int *errret);
int setterm(char *
TERMINAL *set_curterm(TERMINAL *
int del_curterm(TERMINAL *
int restartterm(char *
term, int fildes, int *errret);
char *tparm(char *
str, ...);
int tputs(const char *
str, int affcnt, int (*putc)(int));
int putp(const char *
int vidputs(chtype
attrs, int (*putc)(int));
int vidattr(chtype
int vid_puts(attr_t
attrs, short pair, void *opts, int (*putc)(int));
int vid_attr(attr_t
attrs, short pair, void *opts);
int mvcur(int
oldrow, int oldcol, int newrow, int newcol);
int tigetflag(char *
int tigetnum(char *
char *tigetstr(char *
char *tiparm(const char *
str, ...);


These low-level routines must be called by programs that have to deal directly with the terminfo database to handle certain terminal capabilities, such as programming function keys. For all other functionality, curses routines are more suitable and their use is recommended.

Initially, setupterm should be called. Note that setupterm is automatically called by initscr and newterm. This defines the set of terminal-dependent variables [listed in terminfo(5)].

Each initialization routine provides applications with the terminal capabilities either directly (via header definitions), or by special functions. The header files curses.h and term.h should be included (in this order) to get the definitions for these strings, numbers, and flags.

The terminfo variables lines and columns are initialized by setupterm as follows:

If use_env(FALSE) has been called, values for lines and columns specified in terminfo are used.

Otherwise, if the environment variables LINES and COLUMNS exist, their values are used. If these environment variables do not exist and the program is running in a window, the current window size is used. Otherwise, if the environment variables do not exist, the values for lines and columns specified in the terminfo database are used.

Parameterized strings should be passed through tparm to instantiate them. All terminfo strings [including the output of tparm] should be printed with tputs or putp. Call reset_shell_mode to restore the tty modes before exiting [see kernel(3NCURSES)].

Programs which use cursor addressing should

output enter_ca_mode upon startup and

output exit_ca_mode before exiting.

Programs which execute shell subprocesses should

call reset_shell_mode and output exit_ca_mode before the shell is called and

output enter_ca_mode and call reset_prog_mode after returning from the shell.

The setupterm routine reads in the terminfo database, initializing the terminfo structures, but does not set up the output virtualization structures used by curses. The terminal type is the character string term; if term is null, the environment variable TERM is used. All output is to file descriptor fildes which is initialized for output. If errret is not null, then setupterm returns OK or ERR and stores a status value in the integer pointed to by errret. A return value of OK combined with status of 1 in errret is normal. If ERR is returned, examine errret:


means that the terminal is hardcopy, cannot be used for curses applications.

setupterm determines if the entry is a hardcopy type by checking the hc (hardcopy) capability.


means that the terminal could not be found, or that it is a generic type, having too little information for curses applications to run.

setupterm determines if the entry is a generic type by checking the gn (generic) capability.


means that the terminfo database could not be found.

If errret is null, setupterm prints an error message upon finding an error and exits. Thus, the simplest call is:

setupterm((char *)0, 1, (int *)0);,

which uses all the defaults and sends the output to stdout.

The setterm routine was replaced by setupterm. The call:

setupterm(term, 1, (int *)0)

provides the same functionality as setterm(term). The setterm routine is provided for BSD compatibility, and is not recommended for new programs.

The Terminal State
The setupterm routine stores its information about the terminal in a TERMINAL structure pointed to by the global variable cur_term. If it detects an error, or decides that the terminal is unsuitable (hardcopy or generic), it discards this information, making it not available to applications.

If setupterm is called repeatedly for the same terminal type, it will reuse the information. It maintains only one copy of a given terminal’s capabilities in memory. If it is called for different terminal types, setupterm allocates new storage for each set of terminal capabilities.

The set_curterm routine sets cur_term to nterm, and makes all of the terminfo boolean, numeric, and string variables use the values from nterm. It returns the old value of cur_term.

The del_curterm routine frees the space pointed to by oterm and makes it available for further use. If oterm is the same as cur_term, references to any of the terminfo boolean, numeric, and string variables thereafter may refer to invalid memory locations until another setupterm has been called.

The restartterm routine is similar to setupterm and initscr, except that it is called after restoring memory to a previous state (for example, when reloading a game saved as a core image dump). restartterm assumes that the windows and the input and output options are the same as when memory was saved, but the terminal type and baud rate may be different. Accordingly, restartterm saves various tty state bits, calls setupterm, and then restores the bits.

Formatting Output
The tparm routine instantiates the string str with parameters pi. A pointer is returned to the result of str with the parameters applied.

tiparm is a newer form of tparm which uses <stdarg.h> rather than a fixed-parameter list. Its numeric parameters are integers (int) rather than longs.

Output Functions
The tputs routine applies padding information to the string str and outputs it. The str must be a terminfo string variable or the return value from tparm, tgetstr, or tgoto. affcnt is the number of lines affected, or 1 if not applicable. putc is a putchar-like routine to which the characters are passed, one at a time.

The putp routine calls tputs(str, 1, putchar). Note that the output of putp always goes to stdout, not to the fildes specified in setupterm.

The vidputs routine displays the string on the terminal in the video attribute mode attrs, which is any combination of the attributes listed in ncurses(3NCURSES). The characters are passed to the putchar-like routine putc.

The vidattr routine is like the vidputs routine, except that it outputs through putchar.

The vid_attr and vid_puts routines correspond to vidattr and vidputs, respectively. They use a set of arguments for representing the video attributes plus color, i.e., one of type attr_t for the attributes and one of short for the color_pair number. The vid_attr and vid_puts routines are designed to use the attribute constants with the WA_ prefix. The opts argument is reserved for future use. Currently, applications must provide a null pointer for that argument.

The mvcur routine provides low-level cursor motion. It takes effect immediately (rather than at the next refresh).

Terminal Capability Functions
The tigetflag, tigetnum and tigetstr routines return the value of the capability corresponding to the terminfo capname passed to them, such as xenl. The capname for each capability is given in the table column entitled capname code in the capabilities section of terminfo(5).

These routines return special values to denote errors.

The tigetflag routine returns


if capname is not a boolean capability, or


if it is canceled or absent from the terminal description.

The tigetnum routine returns


if capname is not a numeric capability, or


if it is canceled or absent from the terminal description.

The tigetstr routine returns
(char *)−1

if capname is not a string capability, or


if it is canceled or absent from the terminal description.

Terminal Capability Names
These null-terminated arrays contain the short terminfo names ("codes"), the termcap names, and the long terminfo names ("fnames") for each of the predefined terminfo variables:

char *boolnames[], *boolcodes[], *boolfnames[]

char *numnames[], *numcodes[], *numfnames[]

char *strnames[], *strcodes[], *strfnames[]


Routines that return an integer return ERR upon failure and OK (SVr4 only specifies "an integer value other than ERR") upon successful completion, unless otherwise noted in the preceding routine descriptions.

Routines that return pointers always return NULL on error.

X/Open defines no error conditions. In this implementation


returns an error if its terminal parameter is null.


calls tputs, returning the same error-codes.


returns an error if the associated call to setupterm returns an error.


returns an error if it cannot allocate enough memory, or create the initial windows (stdscr, curscr, newscr). Other error conditions are documented above.


returns an error if the string parameter is null. It does not detect I/O errors: X/Open states that tputs ignores the return value of the output function putc.


X/Open notes that vidattr and vidputs may be macros.

The function setterm is not described by X/Open and must be considered non-portable. All other functions are as described by X/Open.

setupterm copies the terminal name to the array ttytype. This is not part of X/Open Curses, but is assumed by some applications.

If configured to use the terminal-driver, e.g., for the MinGW port,

setupterm interprets a missing/empty TERM variable as the special value “unknown”.

setupterm allows explicit use of the the windows console driver by checking if $TERM is set to “#win32con” or an abbreviation of that string.

Older versions of ncurses assumed that the file descriptor passed to setupterm from initscr or newterm uses buffered I/O, and would write to the corresponding stream. In addition to the limitation that the terminal was left in block-buffered mode on exit (like SystemV curses), it was problematic because ncurses did not allow a reliable way to cleanup on receiving SIGTSTP. The current version uses output buffers managed directly by ncurses. Some of the low-level functions described in this manual page write to the standard output. They are not signal-safe. The high-level functions in ncurses use alternate versions of these functions using the more reliable buffering scheme.

In System V Release 4, set_curterm has an int return type and returns OK or ERR. We have chosen to implement the X/Open Curses semantics.

In System V Release 4, the third argument of tputs has the type int (*putc)(char).

At least one implementation of X/Open Curses (Solaris) returns a value other than OK/ERR from tputs. That returns the length of the string, and does no error-checking.

X/Open Curses prototypes tparm with a fixed number of parameters, rather than a variable argument list. This implementation uses a variable argument list, but can be configured to use the fixed-parameter list. Portable applications should provide 9 parameters after the format; zeroes are fine for this purpose.

In response to comments by Thomas E. Dickey, X/Open Curses Issue 7 proposed the tiparm function in mid-2009.

X/Open notes that after calling mvcur, the curses state may not match the actual terminal state, and that an application should touch and refresh the window before resuming normal curses calls. Both ncurses and System V Release 4 curses implement mvcur using the SCREEN data allocated in either initscr or newterm. So though it is documented as a terminfo function, mvcur is really a curses function which is not well specified.

X/Open states that the old location must be given for mvcur. This implementation allows the caller to use −1’s for the old ordinates. In that case, the old location is unknown.

Other implementions may not declare the capability name arrays. Some provide them without declaring them. X/Open does not specify them.

Extended terminal capability names, e.g., as defined by tic −x, are not stored in the arrays described here.


ncurses(3NCURSES), initscr(3NCURSES), kernel(3NCURSES), termcap(3NCURSES), curses_variables(3NCURSES), terminfo_variables(3NCURSES), putc(3), terminfo(5)


Personal Opportunity - Free software gives you access to billions of dollars of software at no cost. Use this software for your business, personal use or to develop a profitable skill. Access to source code provides access to a level of capabilities/information that companies protect though copyrights. Open source is a core component of the Internet and it is available to you. Leverage the billions of dollars in resources and capabilities to build a career, establish a business or change the world. The potential is endless for those who understand the opportunity.

Business Opportunity - Goldman Sachs, IBM and countless large corporations are leveraging open source to reduce costs, develop products and increase their bottom lines. Learn what these companies know about open source and how open source can give you the advantage.

Free Software

Free Software provides computer programs and capabilities at no cost but more importantly, it provides the freedom to run, edit, contribute to, and share the software. The importance of free software is a matter of access, not price. Software at no cost is a benefit but ownership rights to the software and source code is far more significant.

Free Office Software - The Libre Office suite provides top desktop productivity tools for free. This includes, a word processor, spreadsheet, presentation engine, drawing and flowcharting, database and math applications. Libre Office is available for Linux or Windows.

Free Books

The Free Books Library is a collection of thousands of the most popular public domain books in an online readable format. The collection includes great classical literature and more recent works where the U.S. copyright has expired. These books are yours to read and use without restrictions.

Source Code - Want to change a program or know how it works? Open Source provides the source code for its programs so that anyone can use, modify or learn how to write those programs themselves. Visit the GNU source code repositories to download the source.


Study at Harvard, Stanford or MIT - Open edX provides free online courses from Harvard, MIT, Columbia, UC Berkeley and other top Universities. Hundreds of courses for almost all major subjects and course levels. Open edx also offers some paid courses and selected certifications.

Linux Manual Pages - A man or manual page is a form of software documentation found on Linux/Unix operating systems. Topics covered include computer programs (including library and system calls), formal standards and conventions, and even abstract concepts.