stdarg, va_start, va_arg, va_end, va_copy - variable argument lists
#include <stdarg.h> void va_start(va_list ap, last); type va_arg(va_list ap, type); void va_end(va_list ap); void va_copy(va_list dest, va_list src);
A function may be called with a varying number of arguments of varying types. The include file <stdarg.h> declares a type va_list and defines three macros for stepping through a list of arguments whose number and types are not known to the called function. The called function must declare an object of type va_list which is used by the macros va_start(), va_arg(), and va_end(). va_start() The va_start() macro initializes ap for subsequent use by va_arg() and va_end(), and must be called first. The argument last is the name of the last argument before the variable argument list, that is, the last argument of which the calling function knows the type. Because the address of this argument may be used in the va_start() macro, it should not be declared as a register variable, or as a function or an array type. va_arg() The va_arg() macro expands to an expression that has the type and value of the next argument in the call. The argument ap is the va_list ap initialized by va_start(). Each call to va_arg() modifies ap so that the next call returns the next argument. The argument type is a type name specified so that the type of a pointer to an object that has the specified type can be obtained simply by adding a * to type. The first use of the va_arg() macro after that of the va_start() macro returns the argument after last. Successive invocations return the values of the remaining arguments. If there is no next argument, or if type is not compatible with the type of the actual next argument (as promoted according to the default argument promotions), random errors will occur. If ap is passed to a function that uses va_arg(ap,type), then the value of ap is undefined after the return of that function. va_end() Each invocation of va_start() must be matched by a corresponding invocation of va_end() in the same function. After the call va_end(ap) the variable ap is undefined. Multiple traversals of the list, each bracketed by va_start() and va_end() are possible. va_end() may be a macro or a function. va_copy() The va_copy() macro copies the (previously initialized) variable argument list src to dest. The behavior is as if va_start() were applied to dest with the same last argument, followed by the same number of va_arg() invocations that was used to reach the current state of src. An obvious implementation would have a va_list be a pointer to the stack frame of the variadic function. In such a setup (by far the most common) there seems nothing against an assignment va_list aq = ap; Unfortunately, there are also systems that make it an array of pointers (of length 1), and there one needs va_list aq; *aq = *ap; Finally, on systems where arguments are passed in registers, it may be necessary for va_start() to allocate memory, store the arguments there, and also an indication of which argument is next, so that va_arg() can step through the list. Now va_end() can free the allocated memory again. To accommodate this situation, C99 adds a macro va_copy(), so that the above assignment can be replaced by va_list aq; va_copy(aq, ap); ... va_end(aq); Each invocation of va_copy() must be matched by a corresponding invocation of va_end() in the same function. Some systems that do not supply va_copy() have __va_copy instead, since that was the name used in the draft proposal.
For an explanation of the terms used in this section, see attributes(7). Interface Attribute Value va_start(), va_end(), Thread safety MT-Safe va_copy() va_arg() Thread safety MT-Safe race:ap
The va_start(), va_arg(), and va_end() macros conform to C89. C99 defines the va_copy() macro.
These macros are not compatible with the historic macros they replace. A backward-compatible version can be found in the include file <varargs.h>. The historic setup is: #include <varargs.h> void foo(va_alist) va_dcl { va_list ap; va_start(ap); while (...) { ... x = va_arg(ap, type); ... } va_end(ap); } On some systems, va_end contains a closing '}' matching a '{' in va_start, so that both macros must occur in the same function, and in a way that allows this.
Unlike the varargs macros, the stdarg macros do not permit programmers to code a function with no fixed arguments. This problem generates work mainly when converting varargs code to stdarg code, but it also creates difficulties for variadic functions that wish to pass all of their arguments on to a function that takes a va_list argument, such as vfprintf(3).
The function foo takes a string of format characters and prints out the argument associated with each format character based on the type. #include <stdio.h> #include <stdarg.h> void foo(char *fmt, ...) { va_list ap; int d; char c, *s; va_start(ap, fmt); while (*fmt) switch (*fmt++) { case 's': /* string */ s = va_arg(ap, char *); printf("string %s\n", s); break; case 'd': /* int */ d = va_arg(ap, int); printf("int %d\n", d); break; case 'c': /* char */ /* need a cast here since va_arg only takes fully promoted types */ c = (char) va_arg(ap, int); printf("char %c\n", c); break; } va_end(ap); }
This page is part of release 4.09 of the Linux man-pages project. A description of the project, information about reporting bugs, and the latest version of this page, can be found at https://www.kernel.org/doc/man-pages/. 2015-03-02 STDARG(3)
Personal Opportunity - Free software gives you access to billions of dollars of software at no cost. Use this software for your business, personal use or to develop a profitable skill. Access to source code provides access to a level of capabilities/information that companies protect though copyrights. Open source is a core component of the Internet and it is available to you. Leverage the billions of dollars in resources and capabilities to build a career, establish a business or change the world. The potential is endless for those who understand the opportunity.
Business Opportunity - Goldman Sachs, IBM and countless large corporations are leveraging open source to reduce costs, develop products and increase their bottom lines. Learn what these companies know about open source and how open source can give you the advantage.
Free Software provides computer programs and capabilities at no cost but more importantly, it provides the freedom to run, edit, contribute to, and share the software. The importance of free software is a matter of access, not price. Software at no cost is a benefit but ownership rights to the software and source code is far more significant.
Free Office Software - The Libre Office suite provides top desktop productivity tools for free. This includes, a word processor, spreadsheet, presentation engine, drawing and flowcharting, database and math applications. Libre Office is available for Linux or Windows.
The Free Books Library is a collection of thousands of the most popular public domain books in an online readable format. The collection includes great classical literature and more recent works where the U.S. copyright has expired. These books are yours to read and use without restrictions.
Source Code - Want to change a program or know how it works? Open Source provides the source code for its programs so that anyone can use, modify or learn how to write those programs themselves. Visit the GNU source code repositories to download the source.
Study at Harvard, Stanford or MIT - Open edX provides free online courses from Harvard, MIT, Columbia, UC Berkeley and other top Universities. Hundreds of courses for almost all major subjects and course levels. Open edx also offers some paid courses and selected certifications.
Linux Manual Pages - A man or manual page is a form of software documentation found on Linux/Unix operating systems. Topics covered include computer programs (including library and system calls), formal standards and conventions, and even abstract concepts.