printf, fprintf, dprintf, sprintf, snprintf, vprintf, vfprintf, vdprintf, vsprintf, vsnprintf - formatted output conversion
#include <stdio.h> int printf(const char *format, ...); int fprintf(FILE *stream, const char *format, ...); int dprintf(int fd, const char *format, ...); int sprintf(char *str, const char *format, ...); int snprintf(char *str, size_t size, const char *format, ...); #include <stdarg.h> int vprintf(const char *format, va_list ap); int vfprintf(FILE *stream, const char *format, va_list ap); int vdprintf(int fd, const char *format, va_list ap); int vsprintf(char *str, const char *format, va_list ap); int vsnprintf(char *str, size_t size, const char *format, va_list ap); Feature Test Macro Requirements for glibc (see feature_test_macros(7)): snprintf(), vsnprintf(): _XOPEN_SOURCE >= 500 || _ISOC99_SOURCE || || /* Glibc versions <= 2.19: */ _BSD_SOURCE dprintf(), vdprintf(): Since glibc 2.10: _POSIX_C_SOURCE >= 200809L Before glibc 2.10: _GNU_SOURCE
The functions in the printf() family produce output according to a format as described below. The functions printf() and vprintf() write output to stdout, the standard output stream; fprintf() and vfprintf() write output to the given output stream; sprintf(), snprintf(), vsprintf() and vsnprintf() write to the character string str. The function dprintf() is the same as fprintf(3) except that it outputs to a file descriptor, fd, instead of to a stdio stream. The functions snprintf() and vsnprintf() write at most size bytes (including the terminating null byte ('\0')) to str. The functions vprintf(), vfprintf(), vdprintf(), vsprintf(), vsnprintf() are equivalent to the functions printf(), fprintf(), dprintf(), sprintf(), snprintf(), respectively, except that they are called with a va_list instead of a variable number of arguments. These functions do not call the va_end macro. Because they invoke the va_arg macro, the value of ap is undefined after the call. See stdarg(3). All of these functions write the output under the control of a format string that specifies how subsequent arguments (or arguments accessed via the variable-length argument facilities of stdarg(3)) are converted for output. C99 and POSIX.1-2001 specify that the results are undefined if a call to sprintf(), snprintf(), vsprintf(), or vsnprintf() would cause copying to take place between objects that overlap (e.g., if the target string array and one of the supplied input arguments refer to the same buffer). See NOTES. Format of the format string The format string is a character string, beginning and ending in its initial shift state, if any. The format string is composed of zero or more directives: ordinary characters (not %), which are copied unchanged to the output stream; and conversion specifications, each of which results in fetching zero or more subsequent arguments. Each conversion specification is introduced by the character %, and ends with a conversion specifier. In between there may be (in this order) zero or more flags, an optional minimum field width, an optional precision and an optional length modifier. The arguments must correspond properly (after type promotion) with the conversion specifier. By default, the arguments are used in the order given, where each '*' (see Field width and Precision below) and each conversion specifier asks for the next argument (and it is an error if insufficiently many arguments are given). One can also specify explicitly which argument is taken, at each place where an argument is required, by writing "%m$" instead of '%' and "*m$" instead of '*', where the decimal integer m denotes the position in the argument list of the desired argument, indexed starting from 1. Thus, printf("%*d", width, num); and printf("%2$*1$d", width, num); are equivalent. The second style allows repeated references to the same argument. The C99 standard does not include the style using '$', which comes from the Single UNIX Specification. If the style using '$' is used, it must be used throughout for all conversions taking an argument and all width and precision arguments, but it may be mixed with "%%" formats, which do not consume an argument. There may be no gaps in the numbers of arguments specified using '$'; for example, if arguments 1 and 3 are specified, argument 2 must also be specified somewhere in the format string. For some numeric conversions a radix character ("decimal point") or thousands' grouping character is used. The actual character used depends on the LC_NUMERIC part of the locale. The POSIX locale uses '.' as radix character, and does not have a grouping character. Thus, printf("%'.2f", 1234567.89); results in "1234567.89" in the POSIX locale, in "1234567,89" in the nl_NL locale, and in "1.234.567,89" in the da_DK locale. Flag characters The character % is followed by zero or more of the following flags: # The value should be converted to an "alternate form". For o conversions, the first character of the output string is made zero (by prefixing a 0 if it was not zero already). For x and X conversions, a nonzero result has the string "0x" (or "0X" for X conversions) prepended to it. For a, A, e, E, f, F, g, and G conversions, the result will always contain a decimal point, even if no digits follow it (normally, a decimal point appears in the results of those conversions only if a digit follows). For g and G conversions, trailing zeros are not removed from the result as they would otherwise be. For other conversions, the result is undefined. 0 The value should be zero padded. For d, i, o, u, x, X, a, A, e, E, f, F, g, and G conversions, the converted value is padded on the left with zeros rather than blanks. If the 0 and - flags both appear, the 0 flag is ignored. If a precision is given with a numeric conversion (d, i, o, u, x, and X), the 0 flag is ignored. For other conversions, the behavior is undefined. - The converted value is to be left adjusted on the field boundary. (The default is right justification.) The converted value is padded on the right with blanks, rather than on the left with blanks or zeros. A - overrides a 0 if both are given. ' ' (a space) A blank should be left before a positive number (or empty string) produced by a signed conversion. + A sign (+ or -) should always be placed before a number produced by a signed conversion. By default, a sign is used only for negative numbers. A + overrides a space if both are used. The five flag characters above are defined in the C99 standard. The Single UNIX Specification specifies one further flag character. ' For decimal conversion (i, d, u, f, F, g, G) the output is to be grouped with thousands' grouping characters if the locale information indicates any. Note that many versions of gcc(1) cannot parse this option and will issue a warning. (SUSv2 did not include %'F, but SUSv3 added it.) glibc 2.2 adds one further flag character. I For decimal integer conversion (i, d, u) the output uses the locale's alternative output digits, if any. For example, since glibc 2.2.3 this will give Arabic-Indic digits in the Persian ("fa_IR") locale. Field width An optional decimal digit string (with nonzero first digit) specifying a minimum field width. If the converted value has fewer characters than the field width, it will be padded with spaces on the left (or right, if the left-adjustment flag has been given). Instead of a decimal digit string one may write "*" or "*m$" (for some decimal integer m) to specify that the field width is given in the next argument, or in the m-th argument, respectively, which must be of type int. A negative field width is taken as a '-' flag followed by a positive field width. In no case does a nonexistent or small field width cause truncation of a field; if the result of a conversion is wider than the field width, the field is expanded to contain the conversion result. Precision An optional precision, in the form of a period ('.') followed by an optional decimal digit string. Instead of a decimal digit string one may write "*" or "*m$" (for some decimal integer m) to specify that the precision is given in the next argument, or in the m-th argument, respectively, which must be of type int. If the precision is given as just '.', the precision is taken to be zero. A negative precision is taken as if the precision were omitted. This gives the minimum number of digits to appear for d, i, o, u, x, and X conversions, the number of digits to appear after the radix character for a, A, e, E, f, and F conversions, the maximum number of significant digits for g and G conversions, or the maximum number of characters to be printed from a string for s and S conversions. Length modifier Here, "integer conversion" stands for d, i, o, u, x, or X conversion. hh A following integer conversion corresponds to a signed char or unsigned char argument, or a following n conversion corresponds to a pointer to a signed char argument. h A following integer conversion corresponds to a short int or unsigned short int argument, or a following n conversion corresponds to a pointer to a short int argument. l (ell) A following integer conversion corresponds to a long int or unsigned long int argument, or a following n conversion corresponds to a pointer to a long int argument, or a following c conversion corresponds to a wint_t argument, or a following s conversion corresponds to a pointer to wchar_t argument. ll (ell-ell). A following integer conversion corresponds to a long long int or unsigned long long int argument, or a following n conversion corresponds to a pointer to a long long int argument. L A following a, A, e, E, f, F, g, or G conversion corresponds to a long double argument. (C99 allows %LF, but SUSv2 does not.) This is a synonym for ll. j A following integer conversion corresponds to an intmax_t or uintmax_t argument, or a following n conversion corresponds to a pointer to an intmax_t argument. z A following integer conversion corresponds to a size_t or ssize_t argument, or a following n conversion corresponds to a pointer to a size_t argument. t A following integer conversion corresponds to a ptrdiff_t argument, or a following n conversion corresponds to a pointer to a ptrdiff_t argument. SUSv3 specifies all of the above. SUSv2 specified only the length modifiers h (in hd, hi, ho, hx, hX, hn) and l (in ld, li, lo, lx, lX, ln, lc, ls) and L (in Le, LE, Lf, Lg, LG). Conversion specifiers A character that specifies the type of conversion to be applied. The conversion specifiers and their meanings are: d, i The int argument is converted to signed decimal notation. The precision, if any, gives the minimum number of digits that must appear; if the converted value requires fewer digits, it is padded on the left with zeros. The default precision is 1. When 0 is printed with an explicit precision 0, the output is empty. o, u, x, X The unsigned int argument is converted to unsigned octal (o), unsigned decimal (u), or unsigned hexadecimal (x and X) notation. The letters abcdef are used for x conversions; the letters ABCDEF are used for X conversions. The precision, if any, gives the minimum number of digits that must appear; if the converted value requires fewer digits, it is padded on the left with zeros. The default precision is 1. When 0 is printed with an explicit precision 0, the output is empty. e, E The double argument is rounded and converted in the style [-]d.ddde±dd where there is one digit before the decimal-point character and the number of digits after it is equal to the precision; if the precision is missing, it is taken as 6; if the precision is zero, no decimal-point character appears. An E conversion uses the letter E (rather than e) to introduce the exponent. The exponent always contains at least two digits; if the value is zero, the exponent is 00. f, F The double argument is rounded and converted to decimal notation in the style [-]ddd.ddd, where the number of digits after the decimal-point character is equal to the precision specification. If the precision is missing, it is taken as 6; if the precision is explicitly zero, no decimal-point character appears. If a decimal point appears, at least one digit appears before it. (SUSv2 does not know about F and says that character string representations for infinity and NaN may be made available. SUSv3 adds a specification for F. The C99 standard specifies "[-]inf" or "[-]infinity" for infinity, and a string starting with "nan" for NaN, in the case of f conversion, and "[-]INF" or "[-]INFINITY" or "NAN" in the case of F conversion.) g, G The double argument is converted in style f or e (or F or E for G conversions). The precision specifies the number of significant digits. If the precision is missing, 6 digits are given; if the precision is zero, it is treated as 1. Style e is used if the exponent from its conversion is less than -4 or greater than or equal to the precision. Trailing zeros are removed from the fractional part of the result; a decimal point appears only if it is followed by at least one digit. a, A (C99; not in SUSv2, but added in SUSv3) For a conversion, the double argument is converted to hexadecimal notation (using the letters abcdef) in the style [-]0xh.hhhhp±; for A conversion the prefix 0X, the letters ABCDEF, and the exponent separator P is used. There is one hexadecimal digit before the decimal point, and the number of digits after it is equal to the precision. The default precision suffices for an exact representation of the value if an exact representation in base 2 exists and otherwise is sufficiently large to distinguish values of type double. The digit before the decimal point is unspecified for nonnormalized numbers, and nonzero but otherwise unspecified for normalized numbers. c If no l modifier is present, the int argument is converted to an unsigned char, and the resulting character is written. If an l modifier is present, the wint_t (wide character) argument is converted to a multibyte sequence by a call to the wcrtomb(3) function, with a conversion state starting in the initial state, and the resulting multibyte string is written. s If no l modifier is present: the const char * argument is expected to be a pointer to an array of character type (pointer to a string). Characters from the array are written up to (but not including) a terminating null byte ('\0'); if a precision is specified, no more than the number specified are written. If a precision is given, no null byte need be present; if the precision is not specified, or is greater than the size of the array, the array must contain a terminating null byte. If an l modifier is present: the const wchar_t * argument is expected to be a pointer to an array of wide characters. Wide characters from the array are converted to multibyte characters (each by a call to the wcrtomb(3) function, with a conversion state starting in the initial state before the first wide character), up to and including a terminating null wide character. The resulting multibyte characters are written up to (but not including) the terminating null byte. If a precision is specified, no more bytes than the number specified are written, but no partial multibyte characters are written. Note that the precision determines the number of bytes written, not the number of wide characters or screen positions. The array must contain a terminating null wide character, unless a precision is given and it is so small that the number of bytes written exceeds it before the end of the array is reached. C (Not in C99 or C11, but in SUSv2, SUSv3, and SUSv4.) Synonym for lc. Don't use. S (Not in C99 or C11, but in SUSv2, SUSv3, and SUSv4.) Synonym for ls. Don't use. p The void * pointer argument is printed in hexadecimal (as if by %#x or %#lx). n The number of characters written so far is stored into the integer pointed to by the corresponding argument. That argument shall be an int *, or variant whose size matches the (optionally) supplied integer length modifier. No argument is converted. (This specifier is not supported by the bionic C library.) The behavior is undefined if the conversion specification includes any flags, a field width, or a precision. m (Glibc extension; supported by uClibc and musl.) Print output of strerror(errno). No argument is required. % A '%' is written. No argument is converted. The complete conversion specification is '%%'.
Upon successful return, these functions return the number of characters printed (excluding the null byte used to end output to strings). The functions snprintf() and vsnprintf() do not write more than size bytes (including the terminating null byte ('\0')). If the output was truncated due to this limit, then the return value is the number of characters (excluding the terminating null byte) which would have been written to the final string if enough space had been available. Thus, a return value of size or more means that the output was truncated. (See also below under NOTES.) If an output error is encountered, a negative value is returned.
For an explanation of the terms used in this section, see attributes(7). ┌────────────────────────┬───────────────┬────────────────┐ │Interface │ Attribute │ Value │ ├────────────────────────┼───────────────┼────────────────┤ │printf(), fprintf(), │ Thread safety │ MT-Safe locale │ │sprintf(), snprintf(), │ │ │ │vprintf(), vfprintf(), │ │ │ │vsprintf(), vsnprintf() │ │ │ └────────────────────────┴───────────────┴────────────────┘
fprintf(), printf(), sprintf(), vprintf(), vfprintf(), vsprintf(): POSIX.1-2001, POSIX.1-2008, C89, C99. snprintf(), vsnprintf(): POSIX.1-2001, POSIX.1-2008, C99. The dprintf() and vdprintf() functions were originally GNU extensions that were later standardized in POSIX.1-2008. Concerning the return value of snprintf(), SUSv2 and C99 contradict each other: when snprintf() is called with size=0 then SUSv2 stipulates an unspecified return value less than 1, while C99 allows str to be NULL in this case, and gives the return value (as always) as the number of characters that would have been written in case the output string has been large enough. POSIX.1-2001 and later align their specification of snprintf() with C99. glibc 2.1 adds length modifiers hh, j, t, and z and conversion characters a and A. glibc 2.2 adds the conversion character F with C99 semantics, and the flag character I.
Some programs imprudently rely on code such as the following sprintf(buf, "%s some further text", buf); to append text to buf. However, the standards explicitly note that the results are undefined if source and destination buffers overlap when calling sprintf(), snprintf(), vsprintf(), and vsnprintf(). Depending on the version of gcc(1) used, and the compiler options employed, calls such as the above will not produce the expected results. The glibc implementation of the functions snprintf() and vsnprintf() conforms to the C99 standard, that is, behaves as described above, since glibc version 2.1. Until glibc 2.0.6, they would return -1 when the output was truncated.
Because sprintf() and vsprintf() assume an arbitrarily long string, callers must be careful not to overflow the actual space; this is often impossible to assure. Note that the length of the strings produced is locale-dependent and difficult to predict. Use snprintf() and vsnprintf() instead (or asprintf(3) and vasprintf(3)). Code such as printf(foo); often indicates a bug, since foo may contain a % character. If foo comes from untrusted user input, it may contain %n, causing the printf() call to write to memory and creating a security hole.
To print Pi to five decimal places: #include <math.h> #include <stdio.h> fprintf(stdout, "pi = %.5f\n", 4 * atan(1.0)); To print a date and time in the form "Sunday, July 3, 10:02", where weekday and month are pointers to strings: #include <stdio.h> fprintf(stdout, "%s, %s %d, %.2d:%.2d\n", weekday, month, day, hour, min); Many countries use the day-month-year order. Hence, an internationalized version must be able to print the arguments in an order specified by the format: #include <stdio.h> fprintf(stdout, format, weekday, month, day, hour, min); where format depends on locale, and may permute the arguments. With the value: "%1$s, %3$d. %2$s, %4$d:%5$.2d\n" one might obtain "Sonntag, 3. Juli, 10:02". To allocate a sufficiently large string and print into it (code correct for both glibc 2.0 and glibc 2.1): #include <stdio.h> #include <stdlib.h> #include <stdarg.h> char * make_message(const char *fmt, ...) { int size = 0; char *p = NULL; va_list ap; /* Determine required size */ va_start(ap, fmt); size = vsnprintf(p, size, fmt, ap); va_end(ap); if (size < 0) return NULL; size++; /* For '\0' */ p = malloc(size); if (p == NULL) return NULL; va_start(ap, fmt); size = vsnprintf(p, size, fmt, ap); if (size < 0) { free(p); return NULL; } va_end(ap); return p; } If truncation occurs in glibc versions prior to 2.0.6, this is treated as an error instead of being handled gracefully.
printf(1), asprintf(3), dprintf(3), puts(3), scanf(3), setlocale(3), strfromd(3), wcrtomb(3), wprintf(3), locale(5)
This page is part of release 4.09 of the Linux man-pages project. A description of the project, information about reporting bugs, and the latest version of this page, can be found at https://www.kernel.org/doc/man-pages/.
Personal Opportunity - Free software gives you access to billions of dollars of software at no cost. Use this software for your business, personal use or to develop a profitable skill. Access to source code provides access to a level of capabilities/information that companies protect though copyrights. Open source is a core component of the Internet and it is available to you. Leverage the billions of dollars in resources and capabilities to build a career, establish a business or change the world. The potential is endless for those who understand the opportunity.
Business Opportunity - Goldman Sachs, IBM and countless large corporations are leveraging open source to reduce costs, develop products and increase their bottom lines. Learn what these companies know about open source and how open source can give you the advantage.
Free Software provides computer programs and capabilities at no cost but more importantly, it provides the freedom to run, edit, contribute to, and share the software. The importance of free software is a matter of access, not price. Software at no cost is a benefit but ownership rights to the software and source code is far more significant.
Free Office Software - The Libre Office suite provides top desktop productivity tools for free. This includes, a word processor, spreadsheet, presentation engine, drawing and flowcharting, database and math applications. Libre Office is available for Linux or Windows.
The Free Books Library is a collection of thousands of the most popular public domain books in an online readable format. The collection includes great classical literature and more recent works where the U.S. copyright has expired. These books are yours to read and use without restrictions.
Source Code - Want to change a program or know how it works? Open Source provides the source code for its programs so that anyone can use, modify or learn how to write those programs themselves. Visit the GNU source code repositories to download the source.
Study at Harvard, Stanford or MIT - Open edX provides free online courses from Harvard, MIT, Columbia, UC Berkeley and other top Universities. Hundreds of courses for almost all major subjects and course levels. Open edx also offers some paid courses and selected certifications.
Linux Manual Pages - A man or manual page is a form of software documentation found on Linux/Unix operating systems. Topics covered include computer programs (including library and system calls), formal standards and conventions, and even abstract concepts.