pic - compile pictures for troff or TeX
pic [ -nvCSU ] [ filename ... ] pic -t [ -cvzCSU ] [ filename ... ]
This manual page describes the GNU version of pic, which is part of the groff document formatting system. pic compiles descriptions of pictures embedded within troff or TeX input files into commands that are understood by TeX or troff. Each picture starts with a line beginning with .PS and ends with a line beginning with .PE. Anything outside of .PS and .PE is passed through without change. It is the user's responsibility to provide appropriate definitions of the PS and PE macros. When the macro package being used does not supply such definitions (for example, old versions of -ms), appropriate definitions can be obtained with -mpic: These will center each picture.
Options that do not take arguments may be grouped behind a single -. The special option -- can be used to mark the end of the options. A filename of - refers to the standard input. -C Recognize .PS and .PE even when followed by a character other than space or newline. -S Safer mode; do not execute sh commands. This can be useful when operating on untrustworthy input (enabled by default). -U Unsafe mode; revert the default option -S. -n Don't use the groff extensions to the troff drawing commands. You should use this if you are using a postprocessor that doesn't support these extensions. The extensions are described in groff_out(5). The -n option also causes pic not to use zero- length lines to draw dots in troff mode. -t TeX mode. -c Be more compatible with tpic. Implies -t. Lines beginning with \ are not passed through transparently. Lines beginning with . are passed through with the initial . changed to \. A line beginning with .ps is given special treatment: it takes an optional integer argument specifying the line thickness (pen size) in milliinches; a missing argument restores the previous line thickness; the default line thickness is 8 milliinches. The line thickness thus specified takes effect only when a non- negative line thickness has not been specified by use of the thickness attribute or by setting the linethick variable. -v Print the version number. -z In TeX mode draw dots using zero-length lines. The following options supported by other versions of pic are ignored: -D Draw all lines using the \D escape sequence. pic always does this. -T dev Generate output for the troff device dev. This is unnecessary because the troff output generated by pic is device-independent.
This section describes only the differences between GNU pic and the original version of pic. Many of these differences also apply to newer versions of Unix pic. A complete documentation is available in the file /usr/share/doc/groff-base/pic.ms.gz TeX mode TeX mode is enabled by the -t option. In TeX mode, pic will define a vbox called \graph for each picture. Use the figname command to change the name of the vbox. You must yourself print that vbox using, for example, the command \centerline{ ox\graph} Actually, since the vbox has a height of zero (it is defined with \vtop) this will produce slightly more vertical space above the picture than below it; \centerline{\raise 1em ox\graph} would avoid this. To make the vbox having a positive height and a depth of zero (as used e.g. by LaTeX's graphics.sty), define the following macro in your document: \def\gpicbox#1{% \vbox{\unvbox\csname #1\endcsname\kern 0pt}} Now you can simply say \gpicbox{graph} instead of ox\graph. You must use a TeX driver that supports the tpic specials, version 2. Lines beginning with \ are passed through transparently; a % is added to the end of the line to avoid unwanted spaces. You can safely use this feature to change fonts or to change the value of aselineskip. Anything else may well produce undesirable results; use at your own risk. Lines beginning with a period are not given any special treatment. Commands for variable = expr1 to expr2 [by [*]expr3] do X body X Set variable to expr1. While the value of variable is less than or equal to expr2, do body and increment variable by expr3; if by is not given, increment variable by 1. If expr3 is prefixed by * then variable will instead be multiplied by expr3. The value of expr3 can be negative for the additive case; variable is then tested whether it is greater than or equal to expr2. For the multiplicative case, expr3 must be greater than zero. If the constraints aren't met, the loop isn't executed. X can be any character not occurring in body. if expr then X if-true X [else Y if-false Y] Evaluate expr; if it is non-zero then do if-true, otherwise do if-false. X can be any character not occurring in if-true. Y can be any character not occurring in if-false. print arg... Concatenate the arguments and print as a line on stderr. Each arg must be an expression, a position, or text. This is useful for debugging. command arg... Concatenate the arguments and pass them through as a line to troff or TeX. Each arg must be an expression, a position, or text. This has a similar effect to a line beginning with . or \, but allows the values of variables to be passed through. For example, .PS x = 14 command ".ds string x is " x "." .PE \*[string] prints x is 14. sh X command X Pass command to a shell. X can be any character not occurring in command. copy "filename" Include filename at this point in the file. copy ["filename"] thru X body X [until "word"] copy ["filename"] thru macro [until "word"] This construct does body once for each line of filename; the line is split into blank-delimited words, and occurrences of $i in body, for i between 1 and 9, are replaced by the i-th word of the line. If filename is not given, lines are taken from the current input up to .PE. If an until clause is specified, lines will be read only until a line the first word of which is word; that line will then be discarded. X can be any character not occurring in body. For example, .PS copy thru % circle at ($1,$2) % until "END" 1 2 3 4 5 6 END box .PE is equivalent to .PS circle at (1,2) circle at (3,4) circle at (5,6) box .PE The commands to be performed for each line can also be taken from a macro defined earlier by giving the name of the macro as the argument to thru. reset reset variable1[,] variable2 ... Reset pre-defined variables variable1, variable2 ... to their default values. If no arguments are given, reset all pre- defined variables to their default values. Note that assigning a value to scale also causes all pre-defined variables that control dimensions to be reset to their default values times the new value of scale. plot expr ["text"] This is a text object which is constructed by using text as a format string for sprintf with an argument of expr. If text is omitted a format string of "%g" is used. Attributes can be specified in the same way as for a normal text object. Be very careful that you specify an appropriate format string; pic does only very limited checking of the string. This is deprecated in favour of sprintf. variable := expr This is similar to = except variable must already be defined, and expr will be assigned to variable without creating a variable local to the current block. (By contrast, = defines the variable in the current block if it is not already defined there, and then changes the value in the current block only.) For example, the following: .PS x = 3 y = 3 [ x := 5 y = 5 ] print x " " y .PE prints 5 3 Arguments of the form X anything X are also allowed to be of the form { anything } In this case anything can contain balanced occurrences of { and }. Strings may contain X or imbalanced occurrences of { and }. Expressions The syntax for expressions has been significantly extended: x ^ y (exponentiation) sin(x) cos(x) atan2(y, x) log(x) (base 10) exp(x) (base 10, i.e. 10^x) sqrt(x) int(x) rand() (return a random number between 0 and 1) rand(x) (return a random number between 1 and x; deprecated) srand(x) (set the random number seed) max(e1, e2) min(e1, e2) !e e1 && e2 e1 || e2 e1 == e2 e1 != e2 e1 >= e2 e1 > e2 e1 <= e2 e1 < e2 "str1" == "str2" "str1" != "str2" String comparison expressions must be parenthesised in some contexts to avoid ambiguity. Other Changes A bare expression, expr, is acceptable as an attribute; it is equivalent to dir expr, where dir is the current direction. For example line 2i means draw a line 2 inches long in the current direction. The ‘i’ (or ‘I’) character is ignored; to use another measurement unit, set the scale variable to an appropriate value. The maximum width and height of the picture are taken from the variables maxpswid and maxpsht. Initially these have values 8.5 and 11. Scientific notation is allowed for numbers. For example x = 5e-2 Text attributes can be compounded. For example, "foo" above ljust is valid. There is no limit to the depth to which blocks can be examined. For example, [A: [B: [C: box ]]] with .A.B.C.sw at 1,2 circle at last [].A.B.C is acceptable. Arcs now have compass points determined by the circle of which the arc is a part. Circles, ellipses, and arcs can be dotted or dashed. In TeX mode splines can be dotted or dashed also. Boxes can have rounded corners. The rad attribute specifies the radius of the quarter-circles at each corner. If no rad or diam attribute is given, a radius of boxrad is used. Initially, boxrad has a value of 0. A box with rounded corners can be dotted or dashed. Boxes can have slanted sides. This effectively changes the shape of a box from a rectangle to an arbitrary parallelogram. The xslanted and yslanted attributes specify the x and y offset of the box's upper right corner from its default position. The .PS line can have a second argument specifying a maximum height for the picture. If the width of zero is specified the width will be ignored in computing the scaling factor for the picture. Note that GNU pic will always scale a picture by the same amount vertically as well as horizontally. This is different from the DWB 2.0 pic which may scale a picture by a different amount vertically than horizontally if a height is specified. Each text object has an invisible box associated with it. The compass points of a text object are determined by this box. The implicit motion associated with the object is also determined by this box. The dimensions of this box are taken from the width and height attributes; if the width attribute is not supplied then the width will be taken to be textwid; if the height attribute is not supplied then the height will be taken to be the number of text strings associated with the object times textht. Initially textwid and textht have a value of 0. In (almost all) places where a quoted text string can be used, an expression of the form sprintf("format", arg,...) can also be used; this will produce the arguments formatted according to format, which should be a string as described in printf(3) appropriate for the number of arguments supplied. The thickness of the lines used to draw objects is controlled by the linethick variable. This gives the thickness of lines in points. A negative value means use the default thickness: in TeX output mode, this means use a thickness of 8 milliinches; in TeX output mode with the -c option, this means use the line thickness specified by .ps lines; in troff output mode, this means use a thickness proportional to the pointsize. A zero value means draw the thinnest possible line supported by the output device. Initially it has a value of -1. There is also a thick[ness] attribute. For example, circle thickness 1.5 would draw a circle using a line with a thickness of 1.5 points. The thickness of lines is not affected by the value of the scale variable, nor by the width or height given in the .PS line. Boxes (including boxes with rounded corners or slanted sides), circles and ellipses can be filled by giving them an attribute of fill[ed]. This takes an optional argument of an expression with a value between 0 and 1; 0 will fill it with white, 1 with black, values in between with a proportionally gray shade. A value greater than 1 can also be used: this means fill with the shade of gray that is currently being used for text and lines. Normally this will be black, but output devices may provide a mechanism for changing this. Without an argument, then the value of the variable fillval will be used. Initially this has a value of 0.5. The invisible attribute does not affect the filling of objects. Any text associated with a filled object will be added after the object has been filled, so that the text will not be obscured by the filling. Three additional modifiers are available to specify colored objects: outline[d] sets the color of the outline, shaded the fill color, and colo[u]r[ed] sets both. All three keywords expect a suffix specifying the color, for example circle shaded "green" outline "black" Currently, color support isn't available in TeX mode. Predefined color names for groff are in the device macro files, for example ps.tmac; additional colors can be defined with the .defcolor request (see the manual page of troff(1) for more details). To change the name of the vbox in TeX mode, set the pseudo-variable figname (which is actually a specially parsed command) within a picture. Example: .PS figname = foobar; ... .PE The picture is then available in the box \foobar. pic assumes that at the beginning of a picture both glyph and fill color are set to the default value. Arrow heads will be drawn as solid triangles if the variable arrowhead is non-zero and either TeX mode is enabled or the -n option has not been given. Initially arrowhead has a value of 1. Note that solid arrow heads are always filled with the current outline color. The troff output of pic is device-independent. The -T option is therefore redundant. All numbers are taken to be in inches; numbers are never interpreted to be in troff machine units. Objects can have an aligned attribute. This will only work if the postprocessor is grops, or gropdf. Any text associated with an object having the aligned attribute will be rotated about the center of the object so that it is aligned in the direction from the start point to the end point of the object. Note that this attribute will have no effect for objects whose start and end points are coincident. In places where nth is allowed â€â€˜exprâ€â€™th is also allowed. Note that â€â€™th is a single token: no space is allowed between the â€â€™ and the th. For example, for i = 1 to 4 do { line from â€â€˜iâ€â€™th box.nw to â€â€˜i+1â€â€™th box.se }
To obtain a stand-alone picture from a pic file, enclose your pic code with .PS and .PE requests; roff configuration commands may be added at the beginning of the file, but no roff text. It is necessary to feed this file into groff without adding any page information, so you must check which .PS and .PE requests are actually called. For example, the mm macro package adds a page number, which is very annoying. At the moment, calling standard groff without any macro package works. Alternatively, you can define your own requests, e.g. to do nothing: .de PS .. .de PE .. groff itself does not provide direct conversion into other graphics file formats. But there are lots of possibilities if you first transform your picture into PostScript® format using the groff option -Tps. Since this ps-file lacks BoundingBox information it is not very useful by itself, but it may be fed into other conversion programs, usually named ps2other or pstoother or the like. Moreover, the PostScript interpreter ghostscript (gs) has built-in graphics conversion devices that are called with the option gs -sDEVICE=<devname> Call gs --help for a list of the available devices. An alternative may be to use the -Tpdf option to convert your picture directly into PDF format. The MediaBox of the file produced can be controlled by passing a -P-p papersize to groff. As the Encapsulated PostScript File Format EPS is getting more and more important, and the conversion wasn't regarded trivial in the past you might be interested to know that there is a conversion tool named ps2eps which does the right job. It is much better than the tool ps2epsi packaged with gs. For bitmapped graphic formats, you should use pstopnm; the resulting (intermediate) PNM file can be then converted to virtually any graphics format using the tools of the netpbm package .
/usr/share/groff/1.22.3/tmac/pic.tmac Example definitions of the PS and PE macros.
troff(1), groff_out(5), tex(1), gs(1), ps2eps(1), pstopnm(1), ps2epsi(1), pnm(5) Eric S. Raymond, Making Pictures With GNU PIC. /usr/share/doc/groff-base/pic.ps (this file, together with its source file, pic.ms, is part of the groff documentation) Tpic: Pic for TeX Brian W. Kernighan, PIC — A Graphics Language for Typesetting (User Manual). AT&T Bell Laboratories, Computing Science Technical Report No. 116 <http://cm.bell-labs.com/cm/cs/cstr/116.ps.gz> (revised May, 1991). ps2eps is available from CTAN mirrors, e.g. <ftp://ftp.dante.de/tex-archive/support/ps2eps/> W. Richard Stevens, Turning PIC Into HTML <http://www.kohala.com/start/troff/pic2html.html> W. Richard Stevens, Examples of picMacros <http://www.kohala.com/start/troff/pic.examples.ps>
Input characters that are invalid for groff (i.e., those with ASCII code 0, or 013 octal, or between 015 and 037 octal, or between 0200 and 0237 octal) are rejected even in TeX mode. The interpretation of fillval is incompatible with the pic in 10th edition Unix, which interprets 0 as black and 1 as white. PostScript® is a registered trademark of Adobe Systems Incorporation.
Copyright © 1989-2014 Free Software Foundation, Inc. Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this permission notice are preserved on all copies. Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying, provided that the entire resulting derived work is distributed under the terms of a permission notice identical to this one. Permission is granted to copy and distribute translations of this manual into another language, under the above conditions for modified versions, except that this permission notice may be included in translations approved by the Free Software Foundation instead of in the original English.
Personal Opportunity - Free software gives you access to billions of dollars of software at no cost. Use this software for your business, personal use or to develop a profitable skill. Access to source code provides access to a level of capabilities/information that companies protect though copyrights. Open source is a core component of the Internet and it is available to you. Leverage the billions of dollars in resources and capabilities to build a career, establish a business or change the world. The potential is endless for those who understand the opportunity.
Business Opportunity - Goldman Sachs, IBM and countless large corporations are leveraging open source to reduce costs, develop products and increase their bottom lines. Learn what these companies know about open source and how open source can give you the advantage.
Free Software provides computer programs and capabilities at no cost but more importantly, it provides the freedom to run, edit, contribute to, and share the software. The importance of free software is a matter of access, not price. Software at no cost is a benefit but ownership rights to the software and source code is far more significant.
Free Office Software - The Libre Office suite provides top desktop productivity tools for free. This includes, a word processor, spreadsheet, presentation engine, drawing and flowcharting, database and math applications. Libre Office is available for Linux or Windows.
The Free Books Library is a collection of thousands of the most popular public domain books in an online readable format. The collection includes great classical literature and more recent works where the U.S. copyright has expired. These books are yours to read and use without restrictions.
Source Code - Want to change a program or know how it works? Open Source provides the source code for its programs so that anyone can use, modify or learn how to write those programs themselves. Visit the GNU source code repositories to download the source.
Study at Harvard, Stanford or MIT - Open edX provides free online courses from Harvard, MIT, Columbia, UC Berkeley and other top Universities. Hundreds of courses for almost all major subjects and course levels. Open edx also offers some paid courses and selected certifications.
Linux Manual Pages - A man or manual page is a form of software documentation found on Linux/Unix operating systems. Topics covered include computer programs (including library and system calls), formal standards and conventions, and even abstract concepts.