NOTIFY - generate a notification
NOTIFY channel [ , payload ]
The NOTIFY command sends a notification event together with an optional "payload" string to each client application that has previously executed LISTEN channel for the specified channel name in the current database. Notifications are visible to all users. NOTIFY provides a simple interprocess communication mechanism for a collection of processes accessing the same PostgreSQL database. A payload string can be sent along with the notification, and higher-level mechanisms for passing structured data can be built by using tables in the database to pass additional data from notifier to listener(s). The information passed to the client for a notification event includes the notification channel name, the notifying session's server process PID, and the payload string, which is an empty string if it has not been specified. It is up to the database designer to define the channel names that will be used in a given database and what each one means. Commonly, the channel name is the same as the name of some table in the database, and the notify event essentially means, "I changed this table, take a look at it to see what's new". But no such association is enforced by the NOTIFY and LISTEN commands. For example, a database designer could use several different channel names to signal different sorts of changes to a single table. Alternatively, the payload string could be used to differentiate various cases. When NOTIFY is used to signal the occurrence of changes to a particular table, a useful programming technique is to put the NOTIFY in a rule that is triggered by table updates. In this way, notification happens automatically when the table is changed, and the application programmer cannot accidentally forget to do it. NOTIFY interacts with SQL transactions in some important ways. Firstly, if a NOTIFY is executed inside a transaction, the notify events are not delivered until and unless the transaction is committed. This is appropriate, since if the transaction is aborted, all the commands within it have had no effect, including NOTIFY. But it can be disconcerting if one is expecting the notification events to be delivered immediately. Secondly, if a listening session receives a notification signal while it is within a transaction, the notification event will not be delivered to its connected client until just after the transaction is completed (either committed or aborted). Again, the reasoning is that if a notification were delivered within a transaction that was later aborted, one would want the notification to be undone somehow --- but the server cannot "take back" a notification once it has sent it to the client. So notification events are only delivered between transactions. The upshot of this is that applications using NOTIFY for real-time signaling should try to keep their transactions short. If the same channel name is signaled multiple times from the same transaction with identical payload strings, the database server can decide to deliver a single notification only. On the other hand, notifications with distinct payload strings will always be delivered as distinct notifications. Similarly, notifications from different transactions will never get folded into one notification. Except for dropping later instances of duplicate notifications, NOTIFY guarantees that notifications from the same transaction get delivered in the order they were sent. It is also guaranteed that messages from different transactions are delivered in the order in which the transactions committed. It is common for a client that executes NOTIFY to be listening on the same notification channel itself. In that case it will get back a notification event, just like all the other listening sessions. Depending on the application logic, this could result in useless work, for example, reading a database table to find the same updates that that session just wrote out. It is possible to avoid such extra work by noticing whether the notifying session's server process PID (supplied in the notification event message) is the same as one's own session's PID (available from libpq). When they are the same, the notification event is one's own work bouncing back, and can be ignored.
channel Name of the notification channel to be signaled (any identifier). payload The "payload" string to be communicated along with the notification. This must be specified as a simple string literal. In the default configuration it must be shorter than 8000 bytes. (If binary data or large amounts of information need to be communicated, it's best to put it in a database table and send the key of the record.)
There is a queue that holds notifications that have been sent but not yet processed by all listening sessions. If this queue becomes full, transactions calling NOTIFY will fail at commit. The queue is quite large (8GB in a standard installation) and should be sufficiently sized for almost every use case. However, no cleanup can take place if a session executes LISTEN and then enters a transaction for a very long time. Once the queue is half full you will see warnings in the log file pointing you to the session that is preventing cleanup. In this case you should make sure that this session ends its current transaction so that cleanup can proceed. A transaction that has executed NOTIFY cannot be prepared for two-phase commit. pg_notify To send a notification you can also use the function pg_notify(text, text). The function takes the channel name as the first argument and the payload as the second. The function is much easier to use than the NOTIFY command if you need to work with non-constant channel names and payloads.
Configure and execute a listen/notify sequence from psql: LISTEN virtual; NOTIFY virtual; Asynchronous notification "virtual" received from server process with PID 8448. NOTIFY virtual, 'This is the payload'; Asynchronous notification "virtual" with payload "This is the payload" received from server process with PID 8448. LISTEN foo; SELECT pg_notify('fo' || 'o', 'pay' || 'load'); Asynchronous notification "foo" with payload "payload" received from server process with PID 14728.
There is no NOTIFY statement in the SQL standard.
LISTEN(7), UNLISTEN(7)
Personal Opportunity - Free software gives you access to billions of dollars of software at no cost. Use this software for your business, personal use or to develop a profitable skill. Access to source code provides access to a level of capabilities/information that companies protect though copyrights. Open source is a core component of the Internet and it is available to you. Leverage the billions of dollars in resources and capabilities to build a career, establish a business or change the world. The potential is endless for those who understand the opportunity.
Business Opportunity - Goldman Sachs, IBM and countless large corporations are leveraging open source to reduce costs, develop products and increase their bottom lines. Learn what these companies know about open source and how open source can give you the advantage.
Free Software provides computer programs and capabilities at no cost but more importantly, it provides the freedom to run, edit, contribute to, and share the software. The importance of free software is a matter of access, not price. Software at no cost is a benefit but ownership rights to the software and source code is far more significant.
Free Office Software - The Libre Office suite provides top desktop productivity tools for free. This includes, a word processor, spreadsheet, presentation engine, drawing and flowcharting, database and math applications. Libre Office is available for Linux or Windows.
The Free Books Library is a collection of thousands of the most popular public domain books in an online readable format. The collection includes great classical literature and more recent works where the U.S. copyright has expired. These books are yours to read and use without restrictions.
Source Code - Want to change a program or know how it works? Open Source provides the source code for its programs so that anyone can use, modify or learn how to write those programs themselves. Visit the GNU source code repositories to download the source.
Study at Harvard, Stanford or MIT - Open edX provides free online courses from Harvard, MIT, Columbia, UC Berkeley and other top Universities. Hundreds of courses for almost all major subjects and course levels. Open edx also offers some paid courses and selected certifications.
Linux Manual Pages - A man or manual page is a form of software documentation found on Linux/Unix operating systems. Topics covered include computer programs (including library and system calls), formal standards and conventions, and even abstract concepts.