getauxval - retrieve a value from the auxiliary vector
#include <sys/auxv.h> unsigned long getauxval(unsigned long type);
The getauxval() function retrieves values from the auxiliary vector, a mechanism that the kernel's ELF binary loader uses to pass certain information to user space when a program is executed. Each entry in the auxiliary vector consists of a pair of values: a type that identifies what this entry represents, and a value for that type. Given the argument type, getauxval() returns the corresponding value. The value returned for each type is given in the following list. Not all type values are present on all architectures. AT_BASE The base address of the program interpreter (usually, the dynamic linker). AT_BASE_PLATFORM A string identifying the real platform; may differ from AT_PLATFORM (PowerPC only). AT_CLKTCK The frequency with which times(2) counts. This value can also be obtained via sysconf(_SC_CLK_TCK). AT_DCACHEBSIZE The data cache block size. AT_EGID The effective group ID of the thread. AT_ENTRY The entry address of the executable. AT_EUID The effective user ID of the thread. AT_EXECFD File descriptor of program. AT_EXECFN Pathname used to execute program. AT_FLAGS Flags (unused). AT_FPUCW Used FPU control word (SuperH architecture only). This gives some information about the FPU initialization performed by the kernel. AT_GID The real group ID of the thread. AT_HWCAP An architecture and ABI dependent bit-mask whose settings indicate detailed processor capabilities. The contents of the bit mask are hardware dependent (for example, see the kernel source file arch/x86/include/asm/cpufeature.h for details relating to the Intel x86 architecture; the value returned is the first 32-bit word of the array described there). A human- readable version of the same information is available via /proc/cpuinfo. AT_HWCAP2 (since glibc 2.18) Further machine-dependent hints about processor capabilities. AT_ICACHEBSIZE The instruction cache block size. AT_PAGESZ The system page size (the same value returned by sysconf(_SC_PAGESIZE)). AT_PHDR The address of the program headers of the executable. AT_PHENT The size of program header entry. AT_PHNUM The number of program headers. AT_PLATFORM A pointer to a string that identifies the hardware platform that the program is running on. The dynamic linker uses this in the interpretation of rpath values. AT_RANDOM The address of sixteen bytes containing a random value. AT_SECURE Has a nonzero value if this executable should be treated securely. Most commonly, a nonzero value indicates that the process is executing a set-user-ID or set-group-ID binary (so that its real and effective UIDs or GIDs differ from one another), or that it gained capabilities by executing a binary file that has capabilities (see capabilities(7)). Alternatively, a nonzero value may be triggered by a Linux Security Module. When this value is nonzero, the dynamic linker disables the use of certain environment variables (see ld- linux.so(8)) and glibc changes other aspects of its behavior. (See also secure_getenv(3).) AT_SYSINFO The entry point to the system call function in the vDSO. Not present/needed on all architectures (e.g., absent on x86-64). AT_SYSINFO_EHDR The address of a page containing the virtual Dynamic Shared Object (vDSO) that the kernel creates in order to provide fast implementations of certain system calls. AT_UCACHEBSIZE The unified cache block size. AT_UID The real user ID of the thread.
On success, getauxval() returns the value corresponding to type. If type is not found, 0 is returned.
ENOENT (since glibc 2.19) No entry corresponding to type could be found in the auxiliary vector.
The getauxval() function was added to glibc in version 2.16.
For an explanation of the terms used in this section, see attributes(7). Interface Attribute Value getauxval() Thread safety MT-Safe
This function is a nonstandard glibc extension.
The primary consumer of the information in the auxiliary vector is the dynamic linker ld-linux.so(8). The auxiliary vector is a convenient and efficient shortcut that allows the kernel to communicate a certain set of standard information that the dynamic linker usually or always needs. In some cases, the same information could be obtained by system calls, but using the auxiliary vector is cheaper. The auxiliary vector resides just above the argument list and environment in the process address space. The auxiliary vector supplied to a program can be viewed by setting the LD_SHOW_AUXV environment variable when running a program: $ LD_SHOW_AUXV=1 sleep 1 The auxiliary vector of any process can (subject to file permissions) be obtained via /proc/[pid]/auxv; see proc(5) for more information.
Before the addition of the ENOENT error in glibc 2.19, there was no way to unambiguously distinguish the case where type could not be found from the case where the value corresponding to type was zero.
secure_getenv(3), vdso(7), ld-linux.so(8)
This page is part of release 4.09 of the Linux man-pages project. A description of the project, information about reporting bugs, and the latest version of this page, can be found at https://www.kernel.org/doc/man-pages/.
Personal Opportunity - Free software gives you access to billions of dollars of software at no cost. Use this software for your business, personal use or to develop a profitable skill. Access to source code provides access to a level of capabilities/information that companies protect though copyrights. Open source is a core component of the Internet and it is available to you. Leverage the billions of dollars in resources and capabilities to build a career, establish a business or change the world. The potential is endless for those who understand the opportunity.
Business Opportunity - Goldman Sachs, IBM and countless large corporations are leveraging open source to reduce costs, develop products and increase their bottom lines. Learn what these companies know about open source and how open source can give you the advantage.
Free Software provides computer programs and capabilities at no cost but more importantly, it provides the freedom to run, edit, contribute to, and share the software. The importance of free software is a matter of access, not price. Software at no cost is a benefit but ownership rights to the software and source code is far more significant.
Free Office Software - The Libre Office suite provides top desktop productivity tools for free. This includes, a word processor, spreadsheet, presentation engine, drawing and flowcharting, database and math applications. Libre Office is available for Linux or Windows.
The Free Books Library is a collection of thousands of the most popular public domain books in an online readable format. The collection includes great classical literature and more recent works where the U.S. copyright has expired. These books are yours to read and use without restrictions.
Source Code - Want to change a program or know how it works? Open Source provides the source code for its programs so that anyone can use, modify or learn how to write those programs themselves. Visit the GNU source code repositories to download the source.
Study at Harvard, Stanford or MIT - Open edX provides free online courses from Harvard, MIT, Columbia, UC Berkeley and other top Universities. Hundreds of courses for almost all major subjects and course levels. Open edx also offers some paid courses and selected certifications.
Linux Manual Pages - A man or manual page is a form of software documentation found on Linux/Unix operating systems. Topics covered include computer programs (including library and system calls), formal standards and conventions, and even abstract concepts.