XDrawArc(3)


NAME

   XDrawArc, XDrawArcs, XArc - draw arcs and arc structure

SYNTAX

   int XDrawArc(Display *display, Drawable d, GC gc, int x, int y,
          unsigned int width, unsigned int height, int angle1, int
          angle2);

   int XDrawArcs(Display *display, Drawable d, GC gc, XArc *arcs, int
          narcs);

ARGUMENTS

   angle1    Specifies the start of the arc relative to the three-o'clock
             position from the center, in units of degrees * 64.

   angle2    Specifies the path and extent of the arc relative to the
             start of the arc, in units of degrees * 64.

   arcs      Specifies an array of arcs.

   d         Specifies the drawable.

   display   Specifies the connection to the X server.

   gc        Specifies the GC.

   narcs     Specifies the number of arcs in the array.

   width
   height    Specify the width and height, which are the major and minor
             axes of the arc.

   x
   y         Specify the x and y coordinates, which are relative to the
             origin of the drawable and specify the upper-left corner of
             the bounding rectangle.

DESCRIPTION

   delim %% XDrawArc draws a single circular or elliptical arc, and
   XDrawArcs draws multiple circular or elliptical arcs.  Each arc is
   specified by a rectangle and two angles.  The center of the circle or
   ellipse is the center of the rectangle, and the major and minor axes
   are specified by the width and height.  Positive angles indicate
   counterclockwise motion, and negative angles indicate clockwise motion.
   If the magnitude of angle2 is greater than 360 degrees, XDrawArc or
   XDrawArcs truncates it to 360 degrees.

   For an arc specified as %[ ~x, ~y, ~width , ~height, ~angle1, ~angle2
   ]%, the origin of the major and minor axes is at % [ x +^ {width over
   2} , ~y +^ {height over 2}  ]%, and the infinitely thin path describing
   the entire circle or ellipse intersects the horizontal axis at % [ x,
   ~y +^ {height over 2}  ]% and % [ x +^ width , ~y +^ { height over 2 }]
   % and intersects the vertical axis at % [ x +^ { width over 2 } , ~y ]%
   and % [ x +^ { width over 2 }, ~y +^ height ]%.  These coordinates can
   be fractional and so are not truncated to discrete coordinates.  The
   path should be defined by the ideal mathematical path.  For a wide line
   with line-width lw, the bounding outlines for filling are given by the
   two infinitely thin paths consisting of all points whose perpendicular
   distance from the path of the circle/ellipse is equal to lw/2 (which
   may be a fractional value).  The cap-style and join-style are applied
   the same as for a line corresponding to the tangent of the
   circle/ellipse at the endpoint.

   For an arc specified as % [ ~x, ~y, ~width, ~height, ~angle1, ~angle2
   ]%, the angles must be specified in the effectively skewed coordinate
   system of the ellipse (for a circle, the angles and coordinate systems
   are identical).  The relationship between these angles and angles
   expressed in the normal coordinate system of the screen (as measured
   with a protractor) is as follows:

   % roman "skewed-angle" ~ = ~ atan left ( tan ( roman "normal-angle" )
    * width over height right ) +^ adjust%

   The skewed-angle and normal-angle are expressed in radians (rather than
   in degrees scaled by 64) in the range % [ 0 , ~2 pi  ]% and where atan
   returns a value in the range % [ - pi over 2 , ~pi over 2  ] % and
   adjust is:

   %0%      for normal-angle in the range % [ 0 , ~pi over 2  ]%
   %pi%     for normal-angle in the range % [ pi over 2 , ~{3 pi} over 2  ]%
   %2 pi%   for normal-angle in the range % [ {3 pi} over 2 , ~2 pi  ]%

   For any given arc, XDrawArc and XDrawArcs do not draw a pixel more than
   once.  If two arcs join correctly and if the line-width is greater than
   zero and the arcs intersect, XDrawArc and XDrawArcs do not draw a pixel
   more than once.  Otherwise, the intersecting pixels of intersecting
   arcs are drawn multiple times.  Specifying an arc with one endpoint and
   a clockwise extent draws the same pixels as specifying the other
   endpoint and an equivalent counterclockwise extent, except as it
   affects joins.

   If the last point in one arc coincides with the first point in the
   following arc, the two arcs will join correctly.  If the first point in
   the first arc coincides with the last point in the last arc, the two
   arcs will join correctly.  By specifying one axis to be zero, a
   horizontal or vertical line can be drawn.  Angles are computed based
   solely on the coordinate system and ignore the aspect ratio.

   Both functions use these GC components: function, plane-mask, line-
   width, line-style, cap-style, join-style, fill-style, subwindow-mode,
   clip-x-origin, clip-y-origin, and clip-mask.  They also use these GC
   mode-dependent components: foreground, background, tile, stipple, tile-
   stipple-x-origin, tile-stipple-y-origin, dash-offset, and dash-list.

   XDrawArc and XDrawArcs can generate BadDrawable, BadGC, and BadMatch
   errors.

STRUCTURES

   The XArc structure contains:

   typedef struct {
         short x, y;
         unsigned short width, height;
         short angle1, angle2;             /* Degrees * 64 */
   } XArc;

   All x and y members are signed integers.  The width and height members
   are 16-bit unsigned integers.  You should be careful not to generate
   coordinates and sizes out of the 16-bit ranges, because the protocol
   only has 16-bit fields for these values.

DIAGNOSTICS

   BadDrawable
             A value for a Drawable argument does not name a defined
             Window or Pixmap.

   BadGC     A value for a GContext argument does not name a defined
             GContext.

   BadMatch  An InputOnly window is used as a Drawable.

   BadMatch  Some argument or pair of arguments has the correct type and
             range but fails to match in some other way required by the
             request.

SEE ALSO

   XDrawLine(3), XDrawPoint(3), XDrawRectangle(3)
   Xlib - C Language X Interface





Opportunity


Personal Opportunity - Free software gives you access to billions of dollars of software at no cost. Use this software for your business, personal use or to develop a profitable skill. Access to source code provides access to a level of capabilities/information that companies protect though copyrights. Open source is a core component of the Internet and it is available to you. Leverage the billions of dollars in resources and capabilities to build a career, establish a business or change the world. The potential is endless for those who understand the opportunity.

Business Opportunity - Goldman Sachs, IBM and countless large corporations are leveraging open source to reduce costs, develop products and increase their bottom lines. Learn what these companies know about open source and how open source can give you the advantage.





Free Software


Free Software provides computer programs and capabilities at no cost but more importantly, it provides the freedom to run, edit, contribute to, and share the software. The importance of free software is a matter of access, not price. Software at no cost is a benefit but ownership rights to the software and source code is far more significant.


Free Office Software - The Libre Office suite provides top desktop productivity tools for free. This includes, a word processor, spreadsheet, presentation engine, drawing and flowcharting, database and math applications. Libre Office is available for Linux or Windows.





Free Books


The Free Books Library is a collection of thousands of the most popular public domain books in an online readable format. The collection includes great classical literature and more recent works where the U.S. copyright has expired. These books are yours to read and use without restrictions.


Source Code - Want to change a program or know how it works? Open Source provides the source code for its programs so that anyone can use, modify or learn how to write those programs themselves. Visit the GNU source code repositories to download the source.





Education


Study at Harvard, Stanford or MIT - Open edX provides free online courses from Harvard, MIT, Columbia, UC Berkeley and other top Universities. Hundreds of courses for almost all major subjects and course levels. Open edx also offers some paid courses and selected certifications.


Linux Manual Pages - A man or manual page is a form of software documentation found on Linux/Unix operating systems. Topics covered include computer programs (including library and system calls), formal standards and conventions, and even abstract concepts.