sprof - read and display shared object profiling data
sprof [option]... shared-object-path [profile-data-path]
The sprof command displays a profiling summary for the shared object (shared library) specified as its first command-line argument. The profiling summary is created using previously generated profiling data in the (optional) second command-line argument. If the profiling data pathname is omitted, then sprof will attempt to deduce it using the soname of the shared object, looking for a file with the name <soname>.profile in the current directory.
The following command-line options specify the profile output to be
produced:
-c, --call-pairs
Print a list of pairs of call paths for the interfaces exported
by the shared object, along with the number of times each path
is used.
-p, --flat-profile
Generate a flat profile of all of the functions in the monitored
object, with counts and ticks.
-q, --graph
Generate a call graph.
If none of the above options is specified, then the default behavior is
to display a flat profile and a call graph.
The following additional command-line options are available:
-?, --help
Display a summary of command-line options and arguments and
exit.
--usage
Display a short usage message and exit.
-V, --version
Display the program version and exit.
The sprof command is a GNU extension, not present in POSIX.1.
The following example demonstrates the use of sprof. The example
consists of a main program that calls two functions in a shared object.
First, the code of the main program:
$ cat prog.c
#include <stdlib.h>
void x1(void);
void x2(void);
int
main(int argc, char *argv[])
{
x1();
x2();
exit(EXIT_SUCCESS);
}
The functions x1() and x2() are defined in the following source file
that is used to construct the shared object:
$ cat libdemo.c
#include <unistd.h>
void
consumeCpu1(int lim)
{
int j;
for (j = 0; j < lim; j++)
getppid();
}
void
x1(void) {
int j;
for (j = 0; j < 100; j++)
consumeCpu1(200000);
}
void
consumeCpu2(int lim)
{
int j;
for (j = 0; j < lim; j++)
getppid();
}
void
x2(void)
{
int j;
for (j = 0; j < 1000; j++)
consumeCpu2(10000);
}
Now we construct the shared object with the real name libdemo.so.1.0.1,
and the soname libdemo.so.1:
$ cc -g -fPIC -shared -Wl,-soname,libdemo.so.1 \
-o libdemo.so.1.0.1 libdemo.c
Then we construct symbolic links for the library soname and the library
linker name:
$ ln -sf libdemo.so.1.0.1 libdemo.so.1
$ ln -sf libdemo.so.1 libdemo.so
Next, we compile the main program, linking it against the shared
object, and then list the dynamic dependencies of the program:
$ cc -g -o prog prog.c -L. -ldemo
$ ldd prog
linux-vdso.so.1 => (0x00007fff86d66000)
libdemo.so.1 => not found
libc.so.6 => /lib64/libc.so.6 (0x00007fd4dc138000)
/lib64/ld-linux-x86-64.so.2 (0x00007fd4dc51f000)
In order to get profiling information for the shared object, we define
the environment variable LD_PROFILE with the soname of the library:
$ export LD_PROFILE=libdemo.so.1
We then define the environment variable LD_PROFILE_OUTPUT with the
pathname of the directory where profile output should be written, and
create that directory if it does not exist already:
$ export LD_PROFILE_OUTPUT=$(pwd)/prof_data
$ mkdir -p $LD_PROFILE_OUTPUT
LD_PROFILE causes profiling output to be appended to the output file if
it already exists, so we ensure that there is no preexisting profiling
data:
$ rm -f $LD_PROFILE_OUTPUT/$LD_PROFILE.profile
We then run the program to produce the profiling output, which is
written to a file in the directory specified in LD_PROFILE_OUTPUT:
$ LD_LIBRARY_PATH=. ./prog
$ ls prof_data
libdemo.so.1.profile
We then use the sprof -p option to generate a flat profile with counts
and ticks:
$ sprof -p libdemo.so.1 $LD_PROFILE_OUTPUT/libdemo.so.1.profile
Flat profile:
Each sample counts as 0.01 seconds.
% cumulative self self total
time seconds seconds calls us/call us/call name
60.00 0.06 0.06 100 600.00 consumeCpu1
40.00 0.10 0.04 1000 40.00 consumeCpu2
0.00 0.10 0.00 1 0.00 x1
0.00 0.10 0.00 1 0.00 x2
The sprof -q option generates a call graph:
$ sprof -q libdemo.so.1 $LD_PROFILE_OUTPUT/libdemo.so.1.profile
index % time self children called name
0.00 0.00 100/100 x1 [1]
[0] 100.0 0.00 0.00 100 consumeCpu1 [0]
-----------------------------------------------
0.00 0.00 1/1 <UNKNOWN>
[1] 0.0 0.00 0.00 1 x1 [1]
0.00 0.00 100/100 consumeCpu1 [0]
-----------------------------------------------
0.00 0.00 1000/1000 x2 [3]
[2] 0.0 0.00 0.00 1000 consumeCpu2 [2]
-----------------------------------------------
0.00 0.00 1/1 <UNKNOWN>
[3] 0.0 0.00 0.00 1 x2 [3]
0.00 0.00 1000/1000 consumeCpu2 [2]
-----------------------------------------------
Above and below, the "<UNKNOWN>" strings represent identifiers that are
outside of the profiled object (in this example, these are instances of
main()).
The sprof -c option generates a list of call pairs and the number of
their occurrences:
$ sprof -c libdemo.so.1 $LD_PROFILE_OUTPUT/libdemo.so.1.profile
<UNKNOWN> x1 1
x1 consumeCpu1 100
<UNKNOWN> x2 1
x2 consumeCpu2 1000
gprof(1), ldd(1), ld.so(8)
This page is part of release 4.09 of the Linux man-pages project. A description of the project, information about reporting bugs, and the latest version of this page, can be found at https://www.kernel.org/doc/man-pages/.
Personal Opportunity - Free software gives you access to billions of dollars of software at no cost. Use this software for your business, personal use or to develop a profitable skill. Access to source code provides access to a level of capabilities/information that companies protect though copyrights. Open source is a core component of the Internet and it is available to you. Leverage the billions of dollars in resources and capabilities to build a career, establish a business or change the world. The potential is endless for those who understand the opportunity.
Business Opportunity - Goldman Sachs, IBM and countless large corporations are leveraging open source to reduce costs, develop products and increase their bottom lines. Learn what these companies know about open source and how open source can give you the advantage.
Free Software provides computer programs and capabilities at no cost but more importantly, it provides the freedom to run, edit, contribute to, and share the software. The importance of free software is a matter of access, not price. Software at no cost is a benefit but ownership rights to the software and source code is far more significant.
Free Office Software - The Libre Office suite provides top desktop productivity tools for free. This includes, a word processor, spreadsheet, presentation engine, drawing and flowcharting, database and math applications. Libre Office is available for Linux or Windows.
The Free Books Library is a collection of thousands of the most popular public domain books in an online readable format. The collection includes great classical literature and more recent works where the U.S. copyright has expired. These books are yours to read and use without restrictions.
Source Code - Want to change a program or know how it works? Open Source provides the source code for its programs so that anyone can use, modify or learn how to write those programs themselves. Visit the GNU source code repositories to download the source.
Study at Harvard, Stanford or MIT - Open edX provides free online courses from Harvard, MIT, Columbia, UC Berkeley and other top Universities. Hundreds of courses for almost all major subjects and course levels. Open edx also offers some paid courses and selected certifications.
Linux Manual Pages - A man or manual page is a form of software documentation found on Linux/Unix operating systems. Topics covered include computer programs (including library and system calls), formal standards and conventions, and even abstract concepts.