shmat, shmdt - System V shared memory operations
#include <sys/types.h> #include <sys/shm.h> void *shmat(int shmid, const void *shmaddr, int shmflg); int shmdt(const void *shmaddr);
shmat() shmat() attaches the System V shared memory segment identified by shmid to the address space of the calling process. The attaching address is specified by shmaddr with one of the following criteria: * If shmaddr is NULL, the system chooses a suitable (unused) address at which to attach the segment. * If shmaddr isn't NULL and SHM_RND is specified in shmflg, the attach occurs at the address equal to shmaddr rounded down to the nearest multiple of SHMLBA. * Otherwise, shmaddr must be a page-aligned address at which the attach occurs. In addition to SHM_RND, the following flags may be specified in the shmflg bit-mask argument: SHM_EXEC (Linux-specific; since Linux 2.6.9) Allow the contents of the segment to be executed. The caller must have execute permission on the segment. SHM_RDONLY Attach the segment for read-only access. The process must have read permission for the segment. If this flag is not specified, the segment is attached for read and write access, and the process must have read and write permission for the segment. There is no notion of a write-only shared memory segment. SHM_REMAP (Linux-specific) This flag specifies that the mapping of the segment should replace any existing mapping in the range starting at shmaddr and continuing for the size of the segment. (Normally, an EINVAL error would result if a mapping already exists in this address range.) In this case, shmaddr must not be NULL. The brk(2) value of the calling process is not altered by the attach. The segment will automatically be detached at process exit. The same segment may be attached as a read and as a read-write one, and more than once, in the process's address space. A successful shmat() call updates the members of the shmid_ds structure (see shmctl(2)) associated with the shared memory segment as follows: shm_atime is set to the current time. shm_lpid is set to the process-ID of the calling process. shm_nattch is incremented by one. shmdt() shmdt() detaches the shared memory segment located at the address specified by shmaddr from the address space of the calling process. The to-be-detached segment must be currently attached with shmaddr equal to the value returned by the attaching shmat() call. On a successful shmdt() call, the system updates the members of the shmid_ds structure associated with the shared memory segment as follows: shm_dtime is set to the current time. shm_lpid is set to the process-ID of the calling process. shm_nattch is decremented by one. If it becomes 0 and the segment is marked for deletion, the segment is deleted.
On success, shmat() returns the address of the attached shared memory segment; on error, (void *) -1 is returned, and errno is set to indicate the cause of the error. On success, shmdt() returns 0; on error -1 is returned, and errno is set to indicate the cause of the error.
When shmat() fails, errno is set to one of the following: EACCES The calling process does not have the required permissions for the requested attach type, and does not have the CAP_IPC_OWNER capability in the user namespace that governs its IPC namespace. EIDRM shmid points to a removed identifier. EINVAL Invalid shmid value, unaligned (i.e., not page-aligned and SHM_RND was not specified) or invalid shmaddr value, or can't attach segment at shmaddr, or SHM_REMAP was specified and shmaddr was NULL. ENOMEM Could not allocate memory for the descriptor or for the page tables. When shmdt() fails, errno is set as follows: EINVAL There is no shared memory segment attached at shmaddr; or, shmaddr is not aligned on a page boundary.
POSIX.1-2001, POSIX.1-2008, SVr4. In SVID 3 (or perhaps earlier), the type of the shmaddr argument was changed from char * into const void *, and the returned type of shmat() from char * into void *.
After a fork(2), the child inherits the attached shared memory segments. After an execve(2), all attached shared memory segments are detached from the process. Upon _exit(2), all attached shared memory segments are detached from the process. Using shmat() with shmaddr equal to NULL is the preferred, portable way of attaching a shared memory segment. Be aware that the shared memory segment attached in this way may be attached at different addresses in different processes. Therefore, any pointers maintained within the shared memory must be made relative (typically to the starting address of the segment), rather than absolute. On Linux, it is possible to attach a shared memory segment even if it is already marked to be deleted. However, POSIX.1 does not specify this behavior and many other implementations do not support it. The following system parameter affects shmat(): SHMLBA Segment low boundary address multiple. When explicitly specifying an attach address in a call to shmat(), the caller should ensure that the address is a multiple of this value. This is necessary on some architectures, in order either to ensure good CPU cache performance or to ensure that different attaches of the same segment have consistent views within the CPU cache. SHMLBA is normally some multiple of the system page size (on many Linux architectures, it is the same as the system page size). The implementation places no intrinsic per-process limit on the number of shared memory segments (SHMSEG).
brk(2), mmap(2), shmctl(2), shmget(2), capabilities(7), shm_overview(7), svipc(7)
This page is part of release 4.09 of the Linux man-pages project. A description of the project, information about reporting bugs, and the latest version of this page, can be found at https://www.kernel.org/doc/man-pages/.
Personal Opportunity - Free software gives you access to billions of dollars of software at no cost. Use this software for your business, personal use or to develop a profitable skill. Access to source code provides access to a level of capabilities/information that companies protect though copyrights. Open source is a core component of the Internet and it is available to you. Leverage the billions of dollars in resources and capabilities to build a career, establish a business or change the world. The potential is endless for those who understand the opportunity.
Business Opportunity - Goldman Sachs, IBM and countless large corporations are leveraging open source to reduce costs, develop products and increase their bottom lines. Learn what these companies know about open source and how open source can give you the advantage.
Free Software provides computer programs and capabilities at no cost but more importantly, it provides the freedom to run, edit, contribute to, and share the software. The importance of free software is a matter of access, not price. Software at no cost is a benefit but ownership rights to the software and source code is far more significant.
Free Office Software - The Libre Office suite provides top desktop productivity tools for free. This includes, a word processor, spreadsheet, presentation engine, drawing and flowcharting, database and math applications. Libre Office is available for Linux or Windows.
The Free Books Library is a collection of thousands of the most popular public domain books in an online readable format. The collection includes great classical literature and more recent works where the U.S. copyright has expired. These books are yours to read and use without restrictions.
Source Code - Want to change a program or know how it works? Open Source provides the source code for its programs so that anyone can use, modify or learn how to write those programs themselves. Visit the GNU source code repositories to download the source.
Study at Harvard, Stanford or MIT - Open edX provides free online courses from Harvard, MIT, Columbia, UC Berkeley and other top Universities. Hundreds of courses for almost all major subjects and course levels. Open edx also offers some paid courses and selected certifications.
Linux Manual Pages - A man or manual page is a form of software documentation found on Linux/Unix operating systems. Topics covered include computer programs (including library and system calls), formal standards and conventions, and even abstract concepts.