sd-event - A generic event loop implementation
#include <systemd/sd-event.h> pkg-config --cflags --libs libsystemd
sd-event.h provides a generic event loop implementation, based on Linux epoll(7). See sd_event_new(3), sd_event_run(3), sd_event_add_io(3), sd_event_add_time(3), sd_event_add_signal(3), sd_event_add_child(3), sd_event_add_defer(3), sd_event_source_unref(3), sd_event_source_set_priority(3), sd_event_source_set_enabled(3), sd_event_source_set_userdata(3), sd_event_source_get_event(3), sd_event_source_get_pending(3), sd_event_source_set_description(3), sd_event_source_set_prepare(3), sd_event_wait(3), sd_event_get_fd(3), sd_event_set_watchdog(3), sd_event_exit(3), sd_event_now(3) for more information about the functions available. The event loop design is targeted on running a separate instance of the event loop in each thread; it has no concept of distributing events from a single event loop instance onto multiple worker threads. Dispatching events is strictly ordered and subject to configurable priorities. In each event loop iteration a single event source is dispatched. Each time an event source is dispatched the kernel is polled for new events, before the next event source is dispatched. The event loop is designed to honor priorities and provide fairness within each priority. It is not designed to provide optimal throughput, as this contradicts these goals due the limitations of the underlying epoll(7) primitives. The event loop implementation provides the following features: 1. I/O event sources, based on epoll(7)'s file descriptor watching, including edge triggered events (EPOLLET). See sd_event_add_io(3). 2. Timer event sources, based on timerfd_create(2), supporting the CLOCK_MONOTONIC, CLOCK_REALTIME, CLOCK_BOOTIME clocks, as well as the CLOCK_REALTIME_ALARM and CLOCK_BOOTTIME_ALARM clocks that can resume the system from suspend. When creating timer events a required accuracy parameter may be specified which allows coalescing of timer events to minimize power consumption. See sd_event_add_time(3). 3. UNIX process signal events, based on signalfd(2), including full support for real-time signals, and queued parameters. See sd_event_add_signal(3). 4. Child process state change events, based on waitid(2). See sd_event_add_child(3). 5. Static event sources, of three types: defer, post and exit, for invoking calls in each event loop, after other event sources or at event loop termination. See sd_event_add_defer(3). 6. Event sources may be assigned a 64bit priority value, that controls the order in which event sources are dispatched if multiple are pending simultaneously. See sd_event_source_set_priority(3). 7. The event loop may automatically send watchdog notification messages to the service manager. See sd_event_set_watchdog(3). 8. The event loop may be integrated into foreign event loops, such as the GLib one. See sd_event_get_fd(3) for an example.
These APIs are implemented as a shared library, which can be compiled and linked to with the libsystemd pkg-config(1) file.
systemd(1), sd_event_new(3), sd_event_run(3), sd_event_add_io(3), sd_event_add_time(3), sd_event_add_signal(3), sd_event_add_child(3), sd_event_add_defer(3), sd_event_source_unref(3), sd_event_source_set_priority(3), sd_event_source_set_enabled(3), sd_event_source_set_userdata(3), sd_event_source_get_event(3), sd_event_source_get_pending(3), sd_event_source_set_description(3), sd_event_source_set_prepare(3), sd_event_wait(3), sd_event_get_fd(3), sd_event_set_watchdog(3), sd_event_exit(3), sd_event_now(3), epoll(7), timerfd_create(2), signalfd(2), waitid(2)
Personal Opportunity - Free software gives you access to billions of dollars of software at no cost. Use this software for your business, personal use or to develop a profitable skill. Access to source code provides access to a level of capabilities/information that companies protect though copyrights. Open source is a core component of the Internet and it is available to you. Leverage the billions of dollars in resources and capabilities to build a career, establish a business or change the world. The potential is endless for those who understand the opportunity.
Business Opportunity - Goldman Sachs, IBM and countless large corporations are leveraging open source to reduce costs, develop products and increase their bottom lines. Learn what these companies know about open source and how open source can give you the advantage.
Free Software provides computer programs and capabilities at no cost but more importantly, it provides the freedom to run, edit, contribute to, and share the software. The importance of free software is a matter of access, not price. Software at no cost is a benefit but ownership rights to the software and source code is far more significant.
Free Office Software - The Libre Office suite provides top desktop productivity tools for free. This includes, a word processor, spreadsheet, presentation engine, drawing and flowcharting, database and math applications. Libre Office is available for Linux or Windows.
The Free Books Library is a collection of thousands of the most popular public domain books in an online readable format. The collection includes great classical literature and more recent works where the U.S. copyright has expired. These books are yours to read and use without restrictions.
Source Code - Want to change a program or know how it works? Open Source provides the source code for its programs so that anyone can use, modify or learn how to write those programs themselves. Visit the GNU source code repositories to download the source.
Study at Harvard, Stanford or MIT - Open edX provides free online courses from Harvard, MIT, Columbia, UC Berkeley and other top Universities. Hundreds of courses for almost all major subjects and course levels. Open edx also offers some paid courses and selected certifications.
Linux Manual Pages - A man or manual page is a form of software documentation found on Linux/Unix operating systems. Topics covered include computer programs (including library and system calls), formal standards and conventions, and even abstract concepts.