process_vm_readv, process_vm_writev − transfer data between process address spaces
#include <sys/uio.h>
ssize_t
process_vm_readv(pid_t pid,
const struct iovec *local_iov,
unsigned long liovcnt,
const struct iovec *remote_iov,
unsigned long riovcnt,
unsigned long flags);
ssize_t
process_vm_writev(pid_t pid,
const struct iovec *local_iov,
unsigned long liovcnt,
const struct iovec *remote_iov,
unsigned long riovcnt,
unsigned long flags);
Feature Test Macro Requirements for glibc (see feature_test_macros(7)):
process_vm_readv(), process_vm_write():
_GNU_SOURCE
These system calls transfer data between the address space of the calling process ("the local process") and the process identified by pid ("the remote process"). The data moves directly between the address spaces of the two processes, without passing through kernel space.
The process_vm_readv() system call transfers data from the remote process to the local process. The data to be transferred is identified by remote_iov and riovcnt: remote_iov is a pointer to an array describing address ranges in the process pid, and riovcnt specifies the number of elements in remote_iov. The data is transferred to the locations specified by local_iov and liovcnt: local_iov is a pointer to an array describing address ranges in the calling process, and liovcnt specifies the number of elements in local_iov.
The process_vm_writev() system call is the converse of process_vm_readv()—it transfers data from the local process to the remote process. Other than the direction of the transfer, the arguments liovcnt, local_iov, riovcnt, and remote_iov have the same meaning as for process_vm_readv().
The local_iov and remote_iov arguments point to an array of iovec structures, defined in <sys/uio.h> as:
struct iovec {
void *iov_base; /* Starting address */
size_t iov_len; /* Number of bytes to transfer */
};
Buffers are processed in array order. This means that process_vm_readv() completely fills local_iov[0] before proceeding to local_iov[1], and so on. Likewise, remote_iov[0] is completely read before proceeding to remote_iov[1], and so on.
Similarly, process_vm_writev() writes out the entire contents of local_iov[0] before proceeding to local_iov[1], and it completely fills remote_iov[0] before proceeding to remote_iov[1].
The lengths of remote_iov[i].iov_len and local_iov[i].iov_len do not have to be the same. Thus, it is possible to split a single local buffer into multiple remote buffers, or vice versa.
The flags argument is currently unused and must be set to 0.
The values specified in the liovcnt and riovcnt arguments must be less than or equal to IOV_MAX (defined in <limits.h> or accessible via the call sysconf(_SC_IOV_MAX)).
The count arguments and local_iov are checked before doing any transfers. If the counts are too big, or local_iov is invalid, or the addresses refer to regions that are inaccessible to the local process, none of the vectors will be processed and an error will be returned immediately.
Note, however, that these system calls do not check the memory regions in the remote process until just before doing the read/write. Consequently, a partial read/write (see RETURN VALUE) may result if one of the remote_iov elements points to an invalid memory region in the remote process. No further reads/writes will be attempted beyond that point. Keep this in mind when attempting to read data of unknown length (such as C strings that are null-terminated) from a remote process, by avoiding spanning memory pages (typically 4KiB) in a single remote iovec element. (Instead, split the remote read into two remote_iov elements and have them merge back into a single write local_iov entry. The first read entry goes up to the page boundary, while the second starts on the next page boundary.)
In order to read from or write to another process, either the caller must have the capability CAP_SYS_PTRACE, or the real user ID, effective user ID, and saved set-user-ID of the remote process must match the real user ID of the caller and the real group ID, effective group ID, and saved set-group-ID of the remote process must match the real group ID of the caller. (The permission required is exactly the same as that required to perform a ptrace(2) PTRACE_ATTACH on the remote process.)
On success, process_vm_readv() returns the number of bytes read and process_vm_writev() returns the number of bytes written. This return value may be less than the total number of requested bytes, if a partial read/write occurred. (Partial transfers apply at the granularity of iovec elements. These system calls won’t perform a partial transfer that splits a single iovec element.) The caller should check the return value to determine whether a partial read/write occurred.
On error, −1 is returned and errno is set appropriately.
EINVAL |
The sum of the iov_len values of either local_iov or remote_iov overflows a ssize_t value. | ||
EINVAL |
flags is not 0. | ||
EINVAL |
liovcnt or riovcnt is too large. | ||
EFAULT |
The memory described by local_iov is outside the caller’s accessible address space. | ||
EFAULT |
The memory described by remote_iov is outside the accessible address space of the process pid. | ||
ENOMEM |
Could not allocate memory for internal copies of the iovec structures. | ||
EPERM |
The caller does not have permission to access the address space of the process pid. | ||
ESRCH |
No process with ID pid exists. |
These system calls were added in Linux 3.2. Support is provided in glibc since version 2.15.
These system calls are nonstandard Linux extensions.
The data transfers performed by process_vm_readv() and process_vm_writev() are not guaranteed to be atomic in any way.
These system calls were designed to permit fast message passing by allowing messages to be exchanged with a single copy operation (rather than the double copy that would be required when using, for example, shared memory or pipes).
The following code sample demonstrates the use of process_vm_readv(). It reads 20 bytes at the address 0x10000 from the process with PID 10 and writes the first 10 bytes into buf1 and the second 10 bytes into buf2.
#include <sys/uio.h>
int
main(void)
{
struct iovec local[2];
struct iovec remote[1];
char buf1[10];
char buf2[10];
ssize_t nread;
pid_t pid = 10; /* PID of remote process */
local[0].iov_base
= buf1;
local[0].iov_len = 10;
local[1].iov_base = buf2;
local[1].iov_len = 10;
remote[0].iov_base = (void *) 0x10000;
remote[1].iov_len = 20;
nread =
process_vm_readv(pid, local, 2, remote, 1, 0);
if (nread != 20)
return 1;
else
return 0;
}
This page is part of release 3.69 of the Linux man-pages project. A description of the project, information about reporting bugs, and the latest version of this page, can be found at http://www.kernel.org/doc/man−pages/.
Personal Opportunity - Free software gives you access to billions of dollars of software at no cost. Use this software for your business, personal use or to develop a profitable skill. Access to source code provides access to a level of capabilities/information that companies protect though copyrights. Open source is a core component of the Internet and it is available to you. Leverage the billions of dollars in resources and capabilities to build a career, establish a business or change the world. The potential is endless for those who understand the opportunity.
Business Opportunity - Goldman Sachs, IBM and countless large corporations are leveraging open source to reduce costs, develop products and increase their bottom lines. Learn what these companies know about open source and how open source can give you the advantage.
Free Software provides computer programs and capabilities at no cost but more importantly, it provides the freedom to run, edit, contribute to, and share the software. The importance of free software is a matter of access, not price. Software at no cost is a benefit but ownership rights to the software and source code is far more significant.
Free Office Software - The Libre Office suite provides top desktop productivity tools for free. This includes, a word processor, spreadsheet, presentation engine, drawing and flowcharting, database and math applications. Libre Office is available for Linux or Windows.
The Free Books Library is a collection of thousands of the most popular public domain books in an online readable format. The collection includes great classical literature and more recent works where the U.S. copyright has expired. These books are yours to read and use without restrictions.
Source Code - Want to change a program or know how it works? Open Source provides the source code for its programs so that anyone can use, modify or learn how to write those programs themselves. Visit the GNU source code repositories to download the source.
Study at Harvard, Stanford or MIT - Open edX provides free online courses from Harvard, MIT, Columbia, UC Berkeley and other top Universities. Hundreds of courses for almost all major subjects and course levels. Open edx also offers some paid courses and selected certifications.
Linux Manual Pages - A man or manual page is a form of software documentation found on Linux/Unix operating systems. Topics covered include computer programs (including library and system calls), formal standards and conventions, and even abstract concepts.