pkeyutl - public key algorithm utility
openssl pkeyutl [-in file] [-out file] [-sigfile file] [-inkey file] [-keyform PEM|DER] [-passin arg] [-peerkey file] [-peerform PEM|DER] [-pubin] [-certin] [-rev] [-sign] [-verify] [-verifyrecover] [-encrypt] [-decrypt] [-derive] [-pkeyopt opt:value] [-hexdump] [-asn1parse] [-engine id]
The pkeyutl command can be used to perform public key operations using any supported algorithm.
-in filename
This specifies the input filename to read data from or standard
input if this option is not specified.
-out filename
specifies the output filename to write to or standard output by
default.
-inkey file
the input key file, by default it should be a private key.
-keyform PEM|DER
the key format PEM, DER or ENGINE.
-passin arg
the input key password source. For more information about the
format of arg see the PASS PHRASE ARGUMENTS section in openssl(1).
-peerkey file
the peer key file, used by key derivation (agreement) operations.
-peerform PEM|DER
the peer key format PEM, DER or ENGINE.
-engine id
specifying an engine (by its unique id string) will cause pkeyutl
to attempt to obtain a functional reference to the specified
engine, thus initialising it if needed. The engine will then be set
as the default for all available algorithms.
-pubin
the input file is a public key.
-certin
the input is a certificate containing a public key.
-rev
reverse the order of the input buffer. This is useful for some
libraries (such as CryptoAPI) which represent the buffer in little
endian format.
-sign
sign the input data and output the signed result. This requires a
private key.
-verify
verify the input data against the signature file and indicate if
the verification succeeded or failed.
-verifyrecover
verify the input data and output the recovered data.
-encrypt
encrypt the input data using a public key.
-decrypt
decrypt the input data using a private key.
-derive
derive a shared secret using the peer key.
-hexdump
hex dump the output data.
-asn1parse
asn1parse the output data, this is useful when combined with the
-verifyrecover option when an ASN1 structure is signed.
The operations and options supported vary according to the key algorithm and its implementation. The OpenSSL operations and options are indicated below. Unless otherwise mentioned all algorithms support the digest:alg option which specifies the digest in use for sign, verify and verifyrecover operations. The value alg should represent a digest name as used in the EVP_get_digestbyname() function for example sha1. This value is used only for sanity-checking the lengths of data passed in to the pkeyutl and for creating the structures that make up the signature (e.g. DigestInfo in RSASSA PKCS#1 v1.5 signatures). In case of RSA, ECDSA and DSA signatures, this utility will not perform hashing on input data but rather use the data directly as input of signature algorithm. Depending on key type, signature type and mode of padding, the maximum acceptable lengths of input data differ. In general, with RSA the signed data can't be longer than the key modulus, in case of ECDSA and DSA the data shouldn't be longer than field size, otherwise it will be silently truncated to field size. In other words, if the value of digest is sha1 the input should be 20 bytes long binary encoding of SHA-1 hash function output.
The RSA algorithm supports encrypt, decrypt, sign, verify and
verifyrecover operations in general. Some padding modes only support
some of these operations however.
-rsa_padding_mode:mode
This sets the RSA padding mode. Acceptable values for mode are
pkcs1 for PKCS#1 padding, sslv23 for SSLv23 padding, none for no
padding, oaep for OAEP mode, x931 for X9.31 mode and pss for PSS.
In PKCS#1 padding if the message digest is not set then the
supplied data is signed or verified directly instead of using a
DigestInfo structure. If a digest is set then the a DigestInfo
structure is used and its the length must correspond to the digest
type.
For oeap mode only encryption and decryption is supported.
For x931 if the digest type is set it is used to format the block
data otherwise the first byte is used to specify the X9.31 digest
ID. Sign, verify and verifyrecover are can be performed in this
mode.
For pss mode only sign and verify are supported and the digest type
must be specified.
rsa_pss_saltlen:len
For pss mode only this option specifies the salt length. Two
special values are supported: -1 sets the salt length to the digest
length. When signing -2 sets the salt length to the maximum
permissible value. When verifying -2 causes the salt length to be
automatically determined based on the PSS block structure.
The DSA algorithm supports signing and verification operations only. Currently there are no additional options other than digest. Only the SHA1 digest can be used and this digest is assumed by default.
The DH algorithm only supports the derivation operation and no additional options.
The EC algorithm supports sign, verify and derive operations. The sign and verify operations use ECDSA and derive uses ECDH. Currently there are no additional options other than digest. Only the SHA1 digest can be used and this digest is assumed by default.
Sign some data using a private key:
openssl pkeyutl -sign -in file -inkey key.pem -out sig
Recover the signed data (e.g. if an RSA key is used):
openssl pkeyutl -verifyrecover -in sig -inkey key.pem
Verify the signature (e.g. a DSA key):
openssl pkeyutl -verify -in file -sigfile sig -inkey key.pem
Sign data using a message digest value (this is currently only valid
for RSA):
openssl pkeyutl -sign -in file -inkey key.pem -out sig -pkeyopt digest:sha256
Derive a shared secret value:
openssl pkeyutl -derive -inkey key.pem -peerkey pubkey.pem -out secret
genpkey(1), pkey(1), rsautl(1) dgst(1), rsa(1), genrsa(1)
Personal Opportunity - Free software gives you access to billions of dollars of software at no cost. Use this software for your business, personal use or to develop a profitable skill. Access to source code provides access to a level of capabilities/information that companies protect though copyrights. Open source is a core component of the Internet and it is available to you. Leverage the billions of dollars in resources and capabilities to build a career, establish a business or change the world. The potential is endless for those who understand the opportunity.
Business Opportunity - Goldman Sachs, IBM and countless large corporations are leveraging open source to reduce costs, develop products and increase their bottom lines. Learn what these companies know about open source and how open source can give you the advantage.
Free Software provides computer programs and capabilities at no cost but more importantly, it provides the freedom to run, edit, contribute to, and share the software. The importance of free software is a matter of access, not price. Software at no cost is a benefit but ownership rights to the software and source code is far more significant.
Free Office Software - The Libre Office suite provides top desktop productivity tools for free. This includes, a word processor, spreadsheet, presentation engine, drawing and flowcharting, database and math applications. Libre Office is available for Linux or Windows.
The Free Books Library is a collection of thousands of the most popular public domain books in an online readable format. The collection includes great classical literature and more recent works where the U.S. copyright has expired. These books are yours to read and use without restrictions.
Source Code - Want to change a program or know how it works? Open Source provides the source code for its programs so that anyone can use, modify or learn how to write those programs themselves. Visit the GNU source code repositories to download the source.
Study at Harvard, Stanford or MIT - Open edX provides free online courses from Harvard, MIT, Columbia, UC Berkeley and other top Universities. Hundreds of courses for almost all major subjects and course levels. Open edx also offers some paid courses and selected certifications.
Linux Manual Pages - A man or manual page is a form of software documentation found on Linux/Unix operating systems. Topics covered include computer programs (including library and system calls), formal standards and conventions, and even abstract concepts.