drand48, erand48, lrand48, nrand48, mrand48, jrand48, srand48, seed48, lcong48 - generate uniformly distributed pseudo-random numbers
#include <stdlib.h>
double drand48(void);
double erand48(unsigned short xsubi[3]);
long int lrand48(void);
long int nrand48(unsigned short xsubi[3]);
long int mrand48(void);
long int jrand48(unsigned short xsubi[3]);
void srand48(long int seedval);
unsigned short *seed48(unsigned short seed16v[3]);
void lcong48(unsigned short param[7]);
Feature Test Macro Requirements for glibc (see feature_test_macros(7)):
All functions shown above: _XOPEN_SOURCE
|| /* Glibc since 2.19: */ _DEFAULT_SOURCE
|| /* Glibc versions <= 2.19: */ _SVID_SOURCE
These functions generate pseudo-random numbers using the linear
congruential algorithm and 48-bit integer arithmetic.
The drand48() and erand48() functions return nonnegative double-
precision floating-point values uniformly distributed over the interval
[0.0, 1.0).
The lrand48() and nrand48() functions return nonnegative long integers
uniformly distributed over the interval [0, 2^31).
The mrand48() and jrand48() functions return signed long integers
uniformly distributed over the interval [-2^31, 2^31).
The srand48(), seed48() and lcong48() functions are initialization
functions, one of which should be called before using drand48(),
lrand48() or mrand48(). The functions erand48(), nrand48() and
jrand48() do not require an initialization function to be called first.
All the functions work by generating a sequence of 48-bit integers, Xi,
according to the linear congruential formula:
Xn+1 = (aXn + c) mod m, where n >= 0
The parameter m = 2^48, hence 48-bit integer arithmetic is performed.
Unless lcong48() is called, a and c are given by:
a = 0x5DEECE66D
c = 0xB
The value returned by any of the functions drand48(), erand48(),
lrand48(), nrand48(), mrand48() or jrand48() is computed by first
generating the next 48-bit Xi in the sequence. Then the appropriate
number of bits, according to the type of data item to be returned, is
copied from the high-order bits of Xi and transformed into the returned
value.
The functions drand48(), lrand48() and mrand48() store the last 48-bit
Xi generated in an internal buffer. The functions erand48(), nrand48()
and jrand48() require the calling program to provide storage for the
successive Xi values in the array argument xsubi. The functions are
initialized by placing the initial value of Xi into the array before
calling the function for the first time.
The initializer function srand48() sets the high order 32-bits of Xi to
the argument seedval. The low order 16-bits are set to the arbitrary
value 0x330E.
The initializer function seed48() sets the value of Xi to the 48-bit
value specified in the array argument seed16v. The previous value of
Xi is copied into an internal buffer and a pointer to this buffer is
returned by seed48().
The initialization function lcong48() allows the user to specify
initial values for Xi, a and c. Array argument elements param[0-2]
specify Xi, param[3-5] specify a, and param[6] specifies c. After
lcong48() has been called, a subsequent call to either srand48() or
seed48() will restore the standard values of a and c.
For an explanation of the terms used in this section, see attributes(7). ┌──────────────────────┬───────────────┬────────────────────────┐ │Interface │ Attribute │ Value │ ├──────────────────────┼───────────────┼────────────────────────┤ │drand48(), erand48(), │ Thread safety │ MT-Unsafe race:drand48 │ │lrand48(), nrand48(), │ │ │ │mrand48(), jrand48(), │ │ │ │srand48(), seed48(), │ │ │ │lcong48() │ │ │ └──────────────────────┴───────────────┴────────────────────────┘ The above functions record global state information for the random number generator, so they are not thread-safe.
POSIX.1-2001, POSIX.1-2008, SVr4.
rand(3), random(3)
This page is part of release 4.09 of the Linux man-pages project. A
description of the project, information about reporting bugs, and the
latest version of this page, can be found at
https://www.kernel.org/doc/man-pages/.
2016-03-15 DRAND48(3)
Personal Opportunity - Free software gives you access to billions of dollars of software at no cost. Use this software for your business, personal use or to develop a profitable skill. Access to source code provides access to a level of capabilities/information that companies protect though copyrights. Open source is a core component of the Internet and it is available to you. Leverage the billions of dollars in resources and capabilities to build a career, establish a business or change the world. The potential is endless for those who understand the opportunity.
Business Opportunity - Goldman Sachs, IBM and countless large corporations are leveraging open source to reduce costs, develop products and increase their bottom lines. Learn what these companies know about open source and how open source can give you the advantage.
Free Software provides computer programs and capabilities at no cost but more importantly, it provides the freedom to run, edit, contribute to, and share the software. The importance of free software is a matter of access, not price. Software at no cost is a benefit but ownership rights to the software and source code is far more significant.
Free Office Software - The Libre Office suite provides top desktop productivity tools for free. This includes, a word processor, spreadsheet, presentation engine, drawing and flowcharting, database and math applications. Libre Office is available for Linux or Windows.
The Free Books Library is a collection of thousands of the most popular public domain books in an online readable format. The collection includes great classical literature and more recent works where the U.S. copyright has expired. These books are yours to read and use without restrictions.
Source Code - Want to change a program or know how it works? Open Source provides the source code for its programs so that anyone can use, modify or learn how to write those programs themselves. Visit the GNU source code repositories to download the source.
Study at Harvard, Stanford or MIT - Open edX provides free online courses from Harvard, MIT, Columbia, UC Berkeley and other top Universities. Hundreds of courses for almost all major subjects and course levels. Open edx also offers some paid courses and selected certifications.
Linux Manual Pages - A man or manual page is a form of software documentation found on Linux/Unix operating systems. Topics covered include computer programs (including library and system calls), formal standards and conventions, and even abstract concepts.