mdmon - monitor MD external metadata arrays
mdmon [--all] [--takeover] [--foreground] CONTAINER
The 2.6.27 kernel brings the ability to support external metadata arrays. External metadata implies that user space handles all updates to the metadata. The kernel's responsibility is to notify user space when a "metadata event" occurs, like disk failures and clean-to-dirty transitions. The kernel, in important cases, waits for user space to take action on these notifications.
Metadata updates: To service metadata update requests a daemon, mdmon, is introduced. Mdmon is tasked with polling the sysfs namespace looking for changes in array_state, sync_action, and per disk state attributes. When a change is detected it calls a per metadata type handler to make modifications to the metadata. The following actions are taken: array_state - inactive Clear the dirty bit for the volume and let the array be stopped array_state - write pending Set the dirty bit for the array and then set array_state to active. Writes are blocked until userspace writes active. array_state - active-idle The safe mode timer has expired so set array state to clean to block writes to the array array_state - clean Clear the dirty bit for the volume array_state - read-only This is the initial state that all arrays start at. mdmon takes one of the three actions: 1/ Transition the array to read-auto keeping the dirty bit clear if the metadata handler determines that the array does not need resyncing or other modification 2/ Transition the array to active if the metadata handler determines a resync or some other manipulation is necessary 3/ Leave the array read-only if the volume is marked to not be monitored; for example, the metadata version has been set to "external:-dev/md127" instead of "external:/dev/md127" sync_action - resync-to-idle Notify the metadata handler that a resync may have completed. If a resync process is idled before it completes this event allows the metadata handler to checkpoint resync. sync_action - recover-to-idle A spare may have completed rebuilding so tell the metadata handler about the state of each disk. This is the metadata handler's opportunity to clear any "out-of- sync" bits and clear the volume's degraded status. If a recovery process is idled before it completes this event allows the metadata handler to checkpoint recovery. <disk>/state - faulty A disk failure kicks off a series of events. First, notify the metadata handler that a disk has failed, and then notify the kernel that it can unblock writes that were dependent on this disk. After unblocking the kernel this disk is set to be removed+ from the member array. Finally the disk is marked failed in all other member arrays in the container. + Note This behavior differs slightly from native MD arrays where removal is reserved for a mdadm --remove event. In the external metadata case the container holds the final reference on a block device and a mdadm --remove <container> <victim> call is still required. Containers: External metadata formats, like DDF, differ from the native MD metadata formats in that they define a set of disks and a series of sub-arrays within those disks. MD metadata in comparison defines a 1:1 relationship between a set of block devices and a RAID array. For example to create 2 arrays at different RAID levels on a single set of disks, MD metadata requires the disks be partitioned and then each array can be created with a subset of those partitions. The supported external formats perform this disk carving internally. Container devices simply hold references to all member disks and allow tools like mdmon to determine which active arrays belong to which container. Some array management commands like disk removal and disk add are now only valid at the container level. Attempts to perform these actions on member arrays are blocked with error messages like: "mdadm: Cannot remove disks from a member array, perform this operation on the parent container" Containers are identified in /proc/mdstat with a metadata version string "external:<metadata name>". Member devices are identified by "external:/<container device>/<member index>", or "external:-<container device>/<member index>" if the array is to remain readonly.
CONTAINER The container device to monitor. It can be a full path like /dev/md/container, or a simple md device name like md127. --foreground Normally, mdmon will fork and continue in the background. Adding this option will skip that step and run mdmon in the foreground. --takeover This instructs mdmon to replace any active mdmon which is currently monitoring the array. This is primarily used late in the boot process to replace any mdmon which was started from an initramfs before the root filesystem was mounted. This avoids holding a reference on that initramfs indefinitely and ensures that the pid and sock files used to communicate with mdmon are in a standard place. --all This tells mdmon to find any active containers and start monitoring each of them if appropriate. This is normally used with --takeover late in the boot sequence. A separate mdmon process is started for each container as the --all argument is over-written with the name of the container. To allow for containers with names longer than 5 characters, this argument can be arbitrarily extended, e.g. to --all-active-arrays. Note that mdmon is automatically started by mdadm when needed and so does not need to be considered when working with RAID arrays. The only times it is run other than by mdadm is when the boot scripts need to restart it after mounting the new root filesystem.
As mdmon needs to be running whenever any filesystem on the monitored device is mounted there are special considerations when the root filesystem is mounted from an mdmon monitored device. Note that in general mdmon is needed even if the filesystem is mounted read-only as some filesystems can still write to the device in those circumstances, for example to replay a journal after an unclean shutdown. When the array is assembled by the initramfs code, mdadm will automatically start mdmon as required. This means that mdmon must be installed on the initramfs and there must be a writable filesystem (typically tmpfs) in which mdmon can create a .pid and .sock file. The particular filesystem to use is given to mdmon at compile time and defaults to /run/mdadm. This filesystem must persist through to shutdown time. After the final root filesystem has be instantiated (usually with pivot_root) mdmon should be run with --all --takeover so that the mdmon running from the initramfs can be replaced with one running in the main root, and so the memory used by the initramfs can be released. At shutdown time, mdmon should not be killed along with other processes. Also as it holds a file (socket actually) open in /dev (by default) it will not be possible to unmount /dev if it is a separate filesystem.
mdmon --all-active-arrays --takeover Any mdmon which is currently running is killed and a new instance is started. This should be run during in the boot sequence if an initramfs was used, so that any mdmon running from the initramfs will not hold the initramfs active.
mdadm(8), md(4).
Personal Opportunity - Free software gives you access to billions of dollars of software at no cost. Use this software for your business, personal use or to develop a profitable skill. Access to source code provides access to a level of capabilities/information that companies protect though copyrights. Open source is a core component of the Internet and it is available to you. Leverage the billions of dollars in resources and capabilities to build a career, establish a business or change the world. The potential is endless for those who understand the opportunity.
Business Opportunity - Goldman Sachs, IBM and countless large corporations are leveraging open source to reduce costs, develop products and increase their bottom lines. Learn what these companies know about open source and how open source can give you the advantage.
Free Software provides computer programs and capabilities at no cost but more importantly, it provides the freedom to run, edit, contribute to, and share the software. The importance of free software is a matter of access, not price. Software at no cost is a benefit but ownership rights to the software and source code is far more significant.
Free Office Software - The Libre Office suite provides top desktop productivity tools for free. This includes, a word processor, spreadsheet, presentation engine, drawing and flowcharting, database and math applications. Libre Office is available for Linux or Windows.
The Free Books Library is a collection of thousands of the most popular public domain books in an online readable format. The collection includes great classical literature and more recent works where the U.S. copyright has expired. These books are yours to read and use without restrictions.
Source Code - Want to change a program or know how it works? Open Source provides the source code for its programs so that anyone can use, modify or learn how to write those programs themselves. Visit the GNU source code repositories to download the source.
Study at Harvard, Stanford or MIT - Open edX provides free online courses from Harvard, MIT, Columbia, UC Berkeley and other top Universities. Hundreds of courses for almost all major subjects and course levels. Open edx also offers some paid courses and selected certifications.
Linux Manual Pages - A man or manual page is a form of software documentation found on Linux/Unix operating systems. Topics covered include computer programs (including library and system calls), formal standards and conventions, and even abstract concepts.