makecontext, swapcontext - manipulate user context
#include <ucontext.h> void makecontext(ucontext_t *ucp, void (*func)(), int argc, ...); int swapcontext(ucontext_t *oucp, const ucontext_t *ucp);
In a System V-like environment, one has the type ucontext_t defined in <ucontext.h> and the four functions getcontext(3), setcontext(3), makecontext() and swapcontext() that allow user-level context switching between multiple threads of control within a process. For the type and the first two functions, see getcontext(3). The makecontext() function modifies the context pointed to by ucp (which was obtained from a call to getcontext(3)). Before invoking makecontext(), the caller must allocate a new stack for this context and assign its address to ucp->uc_stack, and define a successor context and assign its address to ucp->uc_link. When this context is later activated (using setcontext(3) or swapcontext()) the function func is called, and passed the series of integer (int) arguments that follow argc; the caller must specify the number of these arguments in argc. When this function returns, the successor context is activated. If the successor context pointer is NULL, the thread exits. The swapcontext() function saves the current context in the structure pointed to by oucp, and then activates the context pointed to by ucp.
When successful, swapcontext() does not return. (But we may return later, in case oucp is activated, in which case it looks like swapcontext() returns 0.) On error, swapcontext() returns -1 and sets errno appropriately.
ENOMEM Insufficient stack space left.
makecontext() and swapcontext() are provided in glibc since version 2.1.
For an explanation of the terms used in this section, see attributes(7). Interface Attribute Value makecontext() Thread safety MT-Safe race:ucp swapcontext() Thread safety MT-Safe race:oucp race:ucp
SUSv2, POSIX.1-2001. POSIX.1-2008 removes the specifications of makecontext() and swapcontext(), citing portability issues, and recommending that applications be rewritten to use POSIX threads instead.
The interpretation of ucp->uc_stack is just as in sigaltstack(2), namely, this struct contains the start and length of a memory area to be used as the stack, regardless of the direction of growth of the stack. Thus, it is not necessary for the user program to worry about this direction. On architectures where int and pointer types are the same size (e.g., x86-32, where both types are 32 bits), you may be able to get away with passing pointers as arguments to makecontext() following argc. However, doing this is not guaranteed to be portable, is undefined according to the standards, and won't work on architectures where pointers are larger than ints. Nevertheless, starting with version 2.8, glibc makes some changes to makecontext(), to permit this on some 64-bit architectures (e.g., x86-64).
The example program below demonstrates the use of getcontext(3), makecontext(), and swapcontext(). Running the program produces the following output: $ ./a.out main: swapcontext(&uctx_main, &uctx_func2) func2: started func2: swapcontext(&uctx_func2, &uctx_func1) func1: started func1: swapcontext(&uctx_func1, &uctx_func2) func2: returning func1: returning main: exiting Program source #include <ucontext.h> #include <stdio.h> #include <stdlib.h> static ucontext_t uctx_main, uctx_func1, uctx_func2; #define handle_error(msg) \ do { perror(msg); exit(EXIT_FAILURE); } while (0) static void func1(void) { printf("func1: started\n"); printf("func1: swapcontext(&uctx_func1, &uctx_func2)\n"); if (swapcontext(&uctx_func1, &uctx_func2) == -1) handle_error("swapcontext"); printf("func1: returning\n"); } static void func2(void) { printf("func2: started\n"); printf("func2: swapcontext(&uctx_func2, &uctx_func1)\n"); if (swapcontext(&uctx_func2, &uctx_func1) == -1) handle_error("swapcontext"); printf("func2: returning\n"); } int main(int argc, char *argv[]) { char func1_stack[16384]; char func2_stack[16384]; if (getcontext(&uctx_func1) == -1) handle_error("getcontext"); uctx_func1.uc_stack.ss_sp = func1_stack; uctx_func1.uc_stack.ss_size = sizeof(func1_stack); uctx_func1.uc_link = &uctx_main; makecontext(&uctx_func1, func1, 0); if (getcontext(&uctx_func2) == -1) handle_error("getcontext"); uctx_func2.uc_stack.ss_sp = func2_stack; uctx_func2.uc_stack.ss_size = sizeof(func2_stack); /* Successor context is f1(), unless argc > 1 */ uctx_func2.uc_link = (argc > 1) ? NULL : &uctx_func1; makecontext(&uctx_func2, func2, 0); printf("main: swapcontext(&uctx_main, &uctx_func2)\n"); if (swapcontext(&uctx_main, &uctx_func2) == -1) handle_error("swapcontext"); printf("main: exiting\n"); exit(EXIT_SUCCESS); }
sigaction(2), sigaltstack(2), sigprocmask(2), getcontext(3), sigsetjmp(3)
This page is part of release 4.09 of the Linux man-pages project. A description of the project, information about reporting bugs, and the latest version of this page, can be found at https://www.kernel.org/doc/man-pages/.
Personal Opportunity - Free software gives you access to billions of dollars of software at no cost. Use this software for your business, personal use or to develop a profitable skill. Access to source code provides access to a level of capabilities/information that companies protect though copyrights. Open source is a core component of the Internet and it is available to you. Leverage the billions of dollars in resources and capabilities to build a career, establish a business or change the world. The potential is endless for those who understand the opportunity.
Business Opportunity - Goldman Sachs, IBM and countless large corporations are leveraging open source to reduce costs, develop products and increase their bottom lines. Learn what these companies know about open source and how open source can give you the advantage.
Free Software provides computer programs and capabilities at no cost but more importantly, it provides the freedom to run, edit, contribute to, and share the software. The importance of free software is a matter of access, not price. Software at no cost is a benefit but ownership rights to the software and source code is far more significant.
Free Office Software - The Libre Office suite provides top desktop productivity tools for free. This includes, a word processor, spreadsheet, presentation engine, drawing and flowcharting, database and math applications. Libre Office is available for Linux or Windows.
The Free Books Library is a collection of thousands of the most popular public domain books in an online readable format. The collection includes great classical literature and more recent works where the U.S. copyright has expired. These books are yours to read and use without restrictions.
Source Code - Want to change a program or know how it works? Open Source provides the source code for its programs so that anyone can use, modify or learn how to write those programs themselves. Visit the GNU source code repositories to download the source.
Study at Harvard, Stanford or MIT - Open edX provides free online courses from Harvard, MIT, Columbia, UC Berkeley and other top Universities. Hundreds of courses for almost all major subjects and course levels. Open edx also offers some paid courses and selected certifications.
Linux Manual Pages - A man or manual page is a form of software documentation found on Linux/Unix operating systems. Topics covered include computer programs (including library and system calls), formal standards and conventions, and even abstract concepts.