hash - hash database access method
#include <sys/types.h> #include <db.h>
Note well: This page documents interfaces provided in glibc up until version 2.1. Since version 2.2, glibc no longer provides these interfaces. Probably, you are looking for the APIs provided by the libdb library instead. The routine dbopen(3) is the library interface to database files. One of the supported file formats is hash files. The general description of the database access methods is in dbopen(3), this manual page describes only the hash-specific information. The hash data structure is an extensible, dynamic hashing scheme. The access-method-specific data structure provided to dbopen(3) is defined in the <db.h> include file as follows: typedef struct { unsigned int bsize; unsigned int ffactor; unsigned int nelem; unsigned int cachesize; uint32_t (*hash)(const void *, size_t); int lorder; } HASHINFO; The elements of this structure are as follows: bsize defines the hash table bucket size, and is, by default, 256 bytes. It may be preferable to increase the page size for disk-resident tables and tables with large data items. ffactor indicates a desired density within the hash table. It is an approximation of the number of keys allowed to accumulate in any one bucket, determining when the hash table grows or shrinks. The default value is 8. nelem is an estimate of the final size of the hash table. If not set or set too low, hash tables will expand gracefully as keys are entered, although a slight performance degradation may be noticed. The default value is 1. cachesize is the suggested maximum size, in bytes, of the memory cache. This value is only advisory, and the access method will allocate more memory rather than fail. hash is a user-defined hash function. Since no hash function performs equally well on all possible data, the user may find that the built-in hash function does poorly on a particular data set. A user-specified hash functions must take two arguments (a pointer to a byte string and a length) and return a 32-bit quantity to be used as the hash value. lorder is the byte order for integers in the stored database metadata. The number should represent the order as an integer; for example, big endian order would be the number 4,321. If lorder is 0 (no order is specified), the current host order is used. If the file already exists, the specified value is ignored and the value specified when the tree was created is used. If the file already exists (and the O_TRUNC flag is not specified), the values specified for bsize, ffactor, lorder, and nelem are ignored and the values specified when the tree was created are used. If a hash function is specified, hash_open will attempt to determine if the hash function specified is the same as the one with which the database was created, and will fail if it is not. Backward-compatible interfaces to the routines described in dbm(3), and ndbm(3) are provided, however these interfaces are not compatible with previous file formats.
The hash access method routines may fail and set errno for any of the errors specified for the library routine dbopen(3).
Only big and little endian byte order are supported.
btree(3), dbopen(3), mpool(3), recno(3) Dynamic Hash Tables, Per-Ake Larson, Communications of the ACM, April 1988. A New Hash Package for UNIX, Margo Seltzer, USENIX Proceedings, Winter 1991.
This page is part of release 4.09 of the Linux man-pages project. A description of the project, information about reporting bugs, and the latest version of this page, can be found at https://www.kernel.org/doc/man-pages/.
Personal Opportunity - Free software gives you access to billions of dollars of software at no cost. Use this software for your business, personal use or to develop a profitable skill. Access to source code provides access to a level of capabilities/information that companies protect though copyrights. Open source is a core component of the Internet and it is available to you. Leverage the billions of dollars in resources and capabilities to build a career, establish a business or change the world. The potential is endless for those who understand the opportunity.
Business Opportunity - Goldman Sachs, IBM and countless large corporations are leveraging open source to reduce costs, develop products and increase their bottom lines. Learn what these companies know about open source and how open source can give you the advantage.
Free Software provides computer programs and capabilities at no cost but more importantly, it provides the freedom to run, edit, contribute to, and share the software. The importance of free software is a matter of access, not price. Software at no cost is a benefit but ownership rights to the software and source code is far more significant.
Free Office Software - The Libre Office suite provides top desktop productivity tools for free. This includes, a word processor, spreadsheet, presentation engine, drawing and flowcharting, database and math applications. Libre Office is available for Linux or Windows.
The Free Books Library is a collection of thousands of the most popular public domain books in an online readable format. The collection includes great classical literature and more recent works where the U.S. copyright has expired. These books are yours to read and use without restrictions.
Source Code - Want to change a program or know how it works? Open Source provides the source code for its programs so that anyone can use, modify or learn how to write those programs themselves. Visit the GNU source code repositories to download the source.
Study at Harvard, Stanford or MIT - Open edX provides free online courses from Harvard, MIT, Columbia, UC Berkeley and other top Universities. Hundreds of courses for almost all major subjects and course levels. Open edx also offers some paid courses and selected certifications.
Linux Manual Pages - A man or manual page is a form of software documentation found on Linux/Unix operating systems. Topics covered include computer programs (including library and system calls), formal standards and conventions, and even abstract concepts.