fopencookie - opening a custom stream
#define _GNU_SOURCE /* See feature_test_macros(7) */ #include <stdio.h> FILE *fopencookie(void *cookie, const char *mode, cookie_io_functions_t io_funcs);
The fopencookie() function allows the programmer to create a custom implementation for a standard I/O stream. This implementation can store the stream's data at a location of its own choosing; for example, fopencookie() is used to implement fmemopen(3), which provides a stream interface to data that is stored in a buffer in memory. In order to create a custom stream the programmer must: * Implement four "hook" functions that are used internally by the standard I/O library when performing I/O on the stream. * Define a "cookie" data type, a structure that provides bookkeeping information (e.g., where to store data) used by the aforementioned hook functions. The standard I/O package knows nothing about the contents of this cookie (thus it is typed as void * when passed to fopencookie()), but automatically supplies the cookie as the first argument when calling the hook functions. * Call fopencookie() to open a new stream and associate the cookie and hook functions with that stream. The fopencookie() function serves a purpose similar to fopen(3): it opens a new stream and returns a pointer to a FILE object that is used to operate on that stream. The cookie argument is a pointer to the caller's cookie structure that is to be associated with the new stream. This pointer is supplied as the first argument when the standard I/O library invokes any of the hook functions described below. The mode argument serves the same purpose as for fopen(3). The following modes are supported: r, w, a, r+, w+, and a+. See fopen(3) for details. The io_funcs argument is a structure that contains four fields pointing to the programmer-defined hook functions that are used to implement this stream. The structure is defined as follows typedef struct { cookie_read_function_t *read; cookie_write_function_t *write; cookie_seek_function_t *seek; cookie_close_function_t *close; } cookie_io_functions_t; The four fields are as follows: cookie_read_function_t *read This function implements read operations for the stream. When called, it receives three arguments: ssize_t read(void *cookie, char *buf, size_t size); The buf and size arguments are, respectively, a buffer into which input data can be placed and the size of that buffer. As its function result, the read function should return the number of bytes copied into buf, 0 on end of file, or -1 on error. The read function should update the stream offset appropriately. If *read is a null pointer, then reads from the custom stream always return end of file. cookie_write_function_t *write This function implements write operations for the stream. When called, it receives three arguments: ssize_t write(void *cookie, const char *buf, size_t size); The buf and size arguments are, respectively, a buffer of data to be output to the stream and the size of that buffer. As its function result, the write function should return the number of bytes copied from buf, or 0 on error. (The function must not return a negative value.) The write function should update the stream offset appropriately. If *write is a null pointer, then output to the stream is discarded. cookie_seek_function_t *seek This function implements seek operations on the stream. When called, it receives three arguments: int seek(void *cookie, off64_t *offset, int whence); The *offset argument specifies the new file offset depending on which of the following three values is supplied in whence: SEEK_SET The stream offset should be set *offset bytes from the start of the stream. SEEK_CUR *offset should be added to the current stream offset. SEEK_END The stream offset should be set to the size of the stream plus *offset. Before returning, the seek function should update *offset to indicate the new stream offset. As its function result, the seek function should return 0 on success, and -1 on error. If *seek is a null pointer, then it is not possible to perform seek operations on the stream. cookie_close_function_t *close This function closes the stream. The hook function can do things such as freeing buffers allocated for the stream. When called, it receives one argument: int close(void *cookie); The cookie argument is the cookie that the programmer supplied when calling fopencookie(). As its function result, the close function should return 0 on success, and EOF on error. If *close is NULL, then no special action is performed when the stream is closed.
On success fopencookie() returns a pointer to the new stream. On error, NULL is returned.
For an explanation of the terms used in this section, see attributes(7). Interface Attribute Value fopencookie() Thread safety MT-Safe
This function is a nonstandard GNU extension.
The program below implements a custom stream whose functionality is similar (but not identical) to that available via fmemopen(3). It implements a stream whose data is stored in a memory buffer. The program writes its command-line arguments to the stream, and then seeks through the stream reading two out of every five characters and writing them to standard output. The following shell session demonstrates the use of the program: $ ./a.out 'hello world' /he/ / w/ /d/ Reached end of file Note that a more general version of the program below could be improved to more robustly handle various error situations (e.g., opening a stream with a cookie that already has an open stream; closing a stream that has already been closed). Program source #define _GNU_SOURCE #include <sys/types.h> #include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <string.h> #define INIT_BUF_SIZE 4 struct memfile_cookie { char *buf; /* Dynamically sized buffer for data */ size_t allocated; /* Size of buf */ size_t endpos; /* Number of characters in buf */ off_t offset; /* Current file offset in buf */ }; ssize_t memfile_write(void *c, const char *buf, size_t size) { char *new_buff; struct memfile_cookie *cookie = c; /* Buffer too small? Keep doubling size until big enough */ while (size + cookie->offset > cookie->allocated) { new_buff = realloc(cookie->buf, cookie->allocated * 2); if (new_buff == NULL) { return -1; } else { cookie->allocated *= 2; cookie->buf = new_buff; } } memcpy(cookie->buf + cookie->offset, buf, size); cookie->offset += size; if (cookie->offset > cookie->endpos) cookie->endpos = cookie->offset; return size; } ssize_t memfile_read(void *c, char *buf, size_t size) { ssize_t xbytes; struct memfile_cookie *cookie = c; /* Fetch minimum of bytes requested and bytes available */ xbytes = size; if (cookie->offset + size > cookie->endpos) xbytes = cookie->endpos - cookie->offset; if (xbytes < 0) /* offset may be past endpos */ xbytes = 0; memcpy(buf, cookie->buf + cookie->offset, xbytes); cookie->offset += xbytes; return xbytes; } int memfile_seek(void *c, off64_t *offset, int whence) { off64_t new_offset; struct memfile_cookie *cookie = c; if (whence == SEEK_SET) new_offset = *offset; else if (whence == SEEK_END) new_offset = cookie->endpos + *offset; else if (whence == SEEK_CUR) new_offset = cookie->offset + *offset; else return -1; if (new_offset < 0) return -1; cookie->offset = new_offset; *offset = new_offset; return 0; } int memfile_close(void *c) { struct memfile_cookie *cookie = c; free(cookie->buf); cookie->allocated = 0; cookie->buf = NULL; return 0; } int main(int argc, char *argv[]) { cookie_io_functions_t memfile_func = { .read = memfile_read, .write = memfile_write, .seek = memfile_seek, .close = memfile_close }; FILE *stream; struct memfile_cookie mycookie; ssize_t nread; long p; int j; char buf[1000]; /* Set up the cookie before calling fopencookie() */ mycookie.buf = malloc(INIT_BUF_SIZE); if (mycookie.buf == NULL) { perror("malloc"); exit(EXIT_FAILURE); } mycookie.allocated = INIT_BUF_SIZE; mycookie.offset = 0; mycookie.endpos = 0; stream = fopencookie(&mycookie,"w+", memfile_func); if (stream == NULL) { perror("fopencookie"); exit(EXIT_FAILURE); } /* Write command-line arguments to our file */ for (j = 1; j < argc; j++) if (fputs(argv[j], stream) == EOF) { perror("fputs"); exit(EXIT_FAILURE); } /* Read two bytes out of every five, until EOF */ for (p = 0; ; p += 5) { if (fseek(stream, p, SEEK_SET) == -1) { perror("fseek"); exit(EXIT_FAILURE); } nread = fread(buf, 1, 2, stream); if (nread == -1) { perror("fread"); exit(EXIT_FAILURE); } if (nread == 0) { printf("Reached end of file\n"); break; } printf("/%.*s/\n", nread, buf); } exit(EXIT_SUCCESS); }
fclose(3), fmemopen(3), fopen(3), fseek(3)
This page is part of release 4.09 of the Linux man-pages project. A description of the project, information about reporting bugs, and the latest version of this page, can be found at https://www.kernel.org/doc/man-pages/.
Personal Opportunity - Free software gives you access to billions of dollars of software at no cost. Use this software for your business, personal use or to develop a profitable skill. Access to source code provides access to a level of capabilities/information that companies protect though copyrights. Open source is a core component of the Internet and it is available to you. Leverage the billions of dollars in resources and capabilities to build a career, establish a business or change the world. The potential is endless for those who understand the opportunity.
Business Opportunity - Goldman Sachs, IBM and countless large corporations are leveraging open source to reduce costs, develop products and increase their bottom lines. Learn what these companies know about open source and how open source can give you the advantage.
Free Software provides computer programs and capabilities at no cost but more importantly, it provides the freedom to run, edit, contribute to, and share the software. The importance of free software is a matter of access, not price. Software at no cost is a benefit but ownership rights to the software and source code is far more significant.
Free Office Software - The Libre Office suite provides top desktop productivity tools for free. This includes, a word processor, spreadsheet, presentation engine, drawing and flowcharting, database and math applications. Libre Office is available for Linux or Windows.
The Free Books Library is a collection of thousands of the most popular public domain books in an online readable format. The collection includes great classical literature and more recent works where the U.S. copyright has expired. These books are yours to read and use without restrictions.
Source Code - Want to change a program or know how it works? Open Source provides the source code for its programs so that anyone can use, modify or learn how to write those programs themselves. Visit the GNU source code repositories to download the source.
Study at Harvard, Stanford or MIT - Open edX provides free online courses from Harvard, MIT, Columbia, UC Berkeley and other top Universities. Hundreds of courses for almost all major subjects and course levels. Open edx also offers some paid courses and selected certifications.
Linux Manual Pages - A man or manual page is a form of software documentation found on Linux/Unix operating systems. Topics covered include computer programs (including library and system calls), formal standards and conventions, and even abstract concepts.