btrfs-man5 - topics about the BTRFS filesystem (mount options, supported file attributes and other)
This document describes topics related to BTRFS that are not specific to the tools. Currently covers: 1. mount options 2. filesystem features 3. file attributes 4. control device
This section describes mount options specific to BTRFS. For the generic mount options please refer to mount(8) manpage. The options are sorted alphabetically (discarding the no prefix). acl, noacl (default: on) Enable/disable support for Posix Access Control Lists (ACLs). See the acl(5) manual page for more information about ACLs. The support for ACL is build-time configurable (BTRFS_FS_POSIX_ACL) and mount fails if acl is requested but the feature is not compiled in. alloc_start=bytes (default: 1M, minimum: 1M) Debugging option to force all block allocations above a certain byte threshold on each block device. The value is specified in bytes, optionally with a K, M, or G suffix (case insensitive). This option was used for testing and has no practical use, it's slated to be removed in the future. autodefrag, noautodefrag (since: 3.0, default: off) Enable automatic file defragmentation. When enabled, small random writes into files (in a range of tens of kilobytes, currently it's 64K) are detected and queued up for the defragmentation process. Not well suited for large database workloads. The read latency may increase due to reading the adjacent blocks that make up the range for defragmentation, successive write will merge the blocks in the new location. Warning Defragmenting with Linux kernel versions < 3.9 or 3.14-rc2 as well as with Linux stable kernel versions 3.10.31, 3.12.12 or 3.13.4 will break up the ref-links of CoW data (for example files copied with cp --reflink, snapshots or de-duplicated data). This may cause considerable increase of space usage depending on the broken up ref-links. barrier, nobarrier (default: on) Ensure that all IO write operations make it through the device cache and are stored permanently when the filesystem is at it's consistency checkpoint. This typically means that a flush command is sent to the device that will synchronize all pending data and ordinary metadata blocks, then writes the superblock and issues another flush. The write flushes incur a slight hit and also prevent the IO block scheduler to reorder requests in a more effective way. Disabling barriers gets rid of that penalty but will most certainly lead to a corrupted filesystem in case of a crash or power loss. The ordinary metadata blocks could be yet unwritten at the time the new superblock is stored permanently, expecting that the block pointers to metadata were stored permanently before. On a device with a volatile battery-backed write-back cache, the nobarrier option will not lead to filesystem corruption as the pending blocks are supposed to make it to the permanent storage. check_int, check_int_data, check_int_print_mask=value (since: 3.0, default: off) These debugging options control the behavior of the integrity checking module (the BTRFS_FS_CHECK_INTEGRITY config option required). check_int enables the integrity checker module, which examines all block write requests to ensure on-disk consistency, at a large memory and CPU cost. check_int_data includes extent data in the integrity checks, and implies the check_int option. check_int_print_mask takes a bitmask of BTRFSIC_PRINT_MASK_* values as defined in fs/btrfs/check-integrity.c, to control the integrity checker module behavior. See comments at the top of fs/btrfs/check-integrity.c for more info. clear_cache Force clearing and rebuilding of the disk space cache if something has gone wrong. See also: space_cache. commit=seconds (since: 3.12, default: 30) Set the interval of periodic commit. Higher values defer data being synced to permanent storage with obvious consequences when the system crashes. The upper bound is not forced, but a warning is printed if it's more than 300 seconds (5 minutes). compress, compress=type, compress-force, compress-force=type (default: off) Control BTRFS file data compression. Type may be specified as zlib, lzo or no (for no compression, used for remounting). If no type is specified, zlib is used. If compress-force is specified, all files will be compressed, whether or not they compress well. Otherwise some simple heuristics are applied to detect an incompressible file. If the first blocks written to a file are not compressible, the whole file is permanently marked to skip compression. Note If compression is enabled, nodatacow and nodatasum are disabled. datacow, nodatacow (default: on) Enable data copy-on-write for newly created files. Nodatacow implies nodatasum, and disables compression. All files created under nodatacow are also set the NOCOW file attribute (see chattr(1)). Note If nodatacow or nodatasum are enabled, compression is disabled. datasum, nodatasum (default: on) Enable data checksumming for newly created files. Datasum implies datacow, ie. the normal mode of operation. All files created under nodatasum inherit the "no checksums" property, however there's no corresponding file attribute (see chattr(1)). Note If nodatacow or nodatasum are enabled, compression is disabled. degraded (default: off) Allow mounts with less devices than the raid profile constraints require. A read-write mount (or remount) may fail with too many devices missing, for example if a stripe member is completely missing from RAID0. device=devicepath Specify a path to a device that will be scanned for BTRFS filesystem during mount. This is usually done automatically by a device manager (like udev) or using the btrfs device scan command (eg. run from the initial ramdisk). In cases where this is not possible the device mount option can help. Note booting eg. a RAID1 system may fail even if all filesystem's device paths are provided as the actual device nodes may not be discovered by the system at that point. discard, nodiscard (default: off) Enable discarding of freed file blocks using TRIM operation. This is useful for SSD devices, thinly provisioned LUNs or virtual machine images where the backing device understands the operation. Depending on support of the underlying device, the operation may severely hurt performance in case the TRIM operation is synchronous (eg. with SATA devices up to revision 3.0). If discarding is not necessary to be done at the block freeing time, there's fstrim tool that lets the filesystem discard all free blocks in a batch, possibly not much interfering with other operations. Also, the the device may ignore the TRIM command if the range is too small, so running the batch discard can actually discard the blocks. enospc_debug, noenospc_debug (default: off) Enable verbose output for some ENOSPC conditions. It's safe to use but can be noisy if the system reaches near-full state. fatal_errors=action (since: 3.4, default: bug) Action to take when encountering a fatal error. bug BUG() on a fatal error, the system will stay in the crashed state and may be still partially usable, but reboot is required for full operation panic panic() on a fatal error, depending on other system configuration, this may be followed by a reboot. Please refer to the documentation of kernel boot parameters, eg. panic, oops or crashkernel. flushoncommit, noflushoncommit (default: off) This option forces any data dirtied by a write in a prior transaction to commit as part of the current commit, effectively a full filesystem sync. This makes the committed state a fully consistent view of the file system from the application's perspective (i.e., it includes all completed file system operations). This was previously the behavior only when a snapshot was created. When off, the filesystem is consistent but buffered writes may last more than one transaction commit. fragment=type (depends on compile-time option BTRFS_DEBUG, since: 4.4, default: off) A debugging helper to intentionally fragment given type of block groups. The type can be data, metadata or all. This mount option should not be used outside of debugging environments and is not recognized if the kernel config option BTRFS_DEBUG is not enabled. inode_cache, noinode_cache (since: 3.0, default: off) Enable free inode number caching. Not recommended to use unless files on your filesystem get assigned inode numbers that are approaching 264. Normally, new files in each subvolume get assigned incrementally (plus one from the last time) and are not reused. The mount option turns on caching of the existing inode numbers and reuse of inode numbers of deleted files. This option may slow down your system at first run, or after mounting without the option. Note Defaults to off due to a potential overflow problem when the free space checksums don't fit inside a single page. logreplay, nologreplay (default: on, even read-only) Enable/disable log replay at mount time. See also treelog. Warning currently, the tree log is replayed even with a read-only mount! To disable that behaviour, mount also with nologreplay. max_inline=bytes (default: min(2048, page size) ) Specify the maximum amount of space, in bytes, that can be inlined in a metadata B-tree leaf. The value is specified in bytes, optionally with a K suffix (case insensitive). In practice, this value is limited by the filesystem block size (named sectorsize at mkfs time), and memory page size of the system. In case of sectorsize limit, there's some space unavailable due to leaf headers. For example, a 4k sectorsize, maximum size of inline data is about 3900 bytes. Inlining can be completely turned off by specifying 0. This will increase data block slack if file sizes are much smaller than block size but will reduce metadata consumption in return. Note the default value has changed to 2048 in kernel 4.6. metadata_ratio=value (default: 0, internal logic) Specifies that 1 metadata chunk should be allocated after every value data chunks. Default behaviour depends on internal logic, some percent of unused metadata space is attempted to be maintained but is not always possible if there's not enough space left for chunk allocation. The option could be useful to override the internal logic in favor of the metadata allocation if the expected workload is supposed to be metadata intense (snapshots, reflinks, xattrs, inlined files). recovery (since: 3.2, default: off, deprecated since: 4.5) Note this option has been replaced by usebackuproot and should not be used but will work on 4.5+ kernels. norecovery (since: 4.5, default: off) Do not attempt any data recovery at mount time. This will disable logreplay and avoids other write operations. Note The opposite option recovery used to have different meaning but was changed for consistency with other filesystems, where norecovery is used for skipping log replay. BTRFS does the same and in general will try to avoid any write operations. rescan_uuid_tree (since: 3.12, default: off) Force check and rebuild procedure of the UUID tree. This should not normally be needed. skip_balance (since: 3.3, default: off) Skip automatic resume of interrupted balance operation after mount. May be resumed with btrfs balance resume or the paused state can be removed by btrfs balance cancel. The default behaviour is to start interrutpd balance. space_cache, space_cache=v2, nospace_cache (nospace_cache since: 3.2, space_cache=v2 since 4.5, default: on) Options to control the free space cache. This affects performance as searching for new free blocks could take longer if the space cache is not enabled. On the other hand, managing the space cache consumes some resources. It can be disabled without clearing at mount time. There are two implementations of how the space is tracked. The safe default is v1. On large filesystems (many-terabytes) and certain workloads the v1 performance may degrade. This problem is addressed by v2, that is based on b-trees, sometimes referred to as free-space-tree. Compatibility notes: * the v2 has to be enabled manually at mount time, once * kernel without v2 support will be able to mount the filesystem in read-only mode * v2 can be removed by mounting with clear_cache ssd, nossd, ssd_spread (default: SSD autodetected) Options to control SSD allocation schemes. By default, BTRFS will enable or disable SSD allocation heuristics depending on whether a rotational or non-rotational disk is in use (contents of /sys/block/DEV/queue/rotational). The ssd and nossd options can override this autodetection. The ssd_spread mount option attempts to allocate into bigger and aligned chunks of unused space, and may perform better on low-end SSDs. ssd_spread implies ssd, enabling all other SSD heuristics as well. subvol=path Mount subvolume from path rather than the toplevel subvolume. The path is absolute (ie. starts at the toplevel subvolume). This mount option overrides the default subvolume set for the given filesystem. subvolid=subvolid Mount subvolume specified by a subvolid number rather than the toplevel subvolume. You can use btrfs subvolume list to see subvolume ID numbers. This mount option overrides the default subvolume set for the given filesystem. Note if both subvolid and subvol are specified, they must point at the same subvolume, otherwise mount will fail. subvolrootid=objectid (irrelevant since: 3.2, formally deprecated since: 3.10) A workaround option from times (pre 3.2) when it was not possible to mount a subvolume that did not reside directly under the toplevel subvolume. thread_pool=number (default: min(NRCPUS + 2, 8) ) The number of worker threads to allocate. NRCPUS is number of on-line CPUs detected at the time of mount. Small number leads to less parallelism in processing data and metadata, higher numbers could lead to a performance hit due to increased locking contention, cache-line bouncing or costly data transfers between local CPU memories. treelog, notreelog (default: on) Enable the tree logging used for fsync and O_SYNC writes. The tree log stores changes without the need of a full filesystem sync. The log operations are flushed at sync and transaction commit. If the system crashes between two such syncs, the pending tree log operations are replayed during mount. Warning currently, the tree log is replayed even with a read-only mount! To disable that behaviour, mount also with nologreplay. The tree log could contain new files/directories, these would not exist on a mounted filesystem if the log is not replayed. usebackuproot, nousebackuproot Enable autorecovery attempts if a bad tree root is found at mount time. Currently this scans a backup list of several previous tree roots and tries to use the first readable. This can be used with read-only mounts as well. Note This option has replaced recovery. user_subvol_rm_allowed (default: off) Allow subvolumes to be deleted by their respective owner. Otherwise, only the root user can do that.
The basic set of filesystem features gets extended over time. The backward compatibility is maintained and the features are optional, need to be explicitly asked for so accidental use will not create incompatibilities. There are several classes and the respective tools to manage the features: at mkfs time only This is namely for core structures, like the b-tree nodesize, see mkfs.btrfs(8) for more details. after mkfs, on an unmounted filesystem Features that may optimize internal structures or add new structures to support new functionality, see btrfstune(8). The command btrfs inspect-internal dump-super device will dump a superblock, you can map the value of incompat_flags to the features listed below after mkfs, on a mounted filesystem The features of a filesystem (with a given UUID) are listed in /sys/fs/btrfs/UUID/features/, one file per feature. The status of is stored insid the file. The value 1 is for enabled, 0 means the feature was had been enabled at the mount time and turned off afterwards. Whether a particular feature can be turned on a mounted filesystem can be found in the directory /sys/fs/btrfs/features/, one file per feature. The value 1 means the feature can be enabled. List of features (see also mkfs.btrfs(8) section FILESYSTEM FEATURES): big_metadata (since: 3.4) the filesystem uses nodesize bigger than the page size compress_lzo:: (since: 2.6.38) the lzo compression has been used on the filesystem, either as a mount option or via btrfs filesystem defrag. default_subvol (since: 2.6.34) the default subvolume has been set on the filesystem extended_iref (since: 3.7) increased hardlink limit per file in a directory to 65536, older kernels supported a varying number of hardlinks depending on the sum of all file name sizes that can be stored into one metadata block mixed_backref (since: 2.6.31) the last major disk format change, improved backreferences mixed_groups (since: 2.6.37) mixed data and metadata block groups, ie. the data and metadata are not separated and occupy the same block groups, this mode is suitable for small volumes as there are no constraints how the remaining space should be used (compared to the split mode, where empty metadata space cannot be used for data and vice versa) on the other hand, the final layout is quite unpredictable and possibly highly fragmented, which means worse performance no_holes (since: 3.14) improved representation of file extents where holes are not explicitly stored as an extent, saves a few percent of metadata if sparse files are used raid56 (since: 3.9) the filesystem contains or contained a raid56 profile of block groups skinny_metadata (since: 3.10) reduced-size metadata for extent references, saves a few percent of metadata
The btrfs filesystem supports setting the following file attributes using the chattr(1) utility: a append only, new writes are always written at the end of the file A no atime updates c compress data, all data written after this attribute is set will be compressed. Please note that compression is also affected by the mount options or the parent directory attributes. When set on a directory, all newly created files will inherit this attribute. C no copy-on-write, file modifications are done in-place When set on a directory, all newly created files will inherit this attribute. Note due to implementation limitations, this flag can be set/unset only on empty files. d no dump, makes sense with 3rd party tools like dump(8), on BTRFS the attribute can be set/unset on no other special handling is done D synchronous directory updates, for more details search open(2) for O_SYNC and O_DSYNC i immutable, no file data and metadata changes allowed even to the root user as long as this attribute is set (obviously the exception is unsetting the attribute) S synchronous updates, for more details search open(2) for O_SYNC and O_DSYNC X no compression, permanently turn off compression on the given file, other compression mount options will not affect that When set on a directory, all newly created files will inherit this attribute. No other attributes are supported. For the complete list please refer to the chattr(1) manual page.
There's a character special device /dev/btrfs-control with major and minor numbers 10 and 234 (the device can be found under the misc category). $ ls -l /dev/btrfs-control crw------- 1 root root 10, 234 Jan 1 12:00 /dev/btrfs-control The device accepts some ioctl calls that can perform following actions on the filesyste module: * scan devices for btrfs filesytem (ie. to let multi-device filesystems mount automatically) and register them with the kernel module * similar to scan, but also wait until the device scanning process is finished for a given filesystem * get the supported features (can be also found under /sys/fs/btrfs/features) The device is usually created by ..., but can be created manually: # mknod --mode=600 c 10 234 /dev/btrfs-control The device is not strictly required but the device scanning will not work and a workaround would need to be used to mount a multi-device filesystem. The mount option device can trigger the device scanning during mount.
acl(5), btrfs(8), chattr(1), fstrim(8), ioctl(2), mkfs.btrfs(8), mount(8)
Personal Opportunity - Free software gives you access to billions of dollars of software at no cost. Use this software for your business, personal use or to develop a profitable skill. Access to source code provides access to a level of capabilities/information that companies protect though copyrights. Open source is a core component of the Internet and it is available to you. Leverage the billions of dollars in resources and capabilities to build a career, establish a business or change the world. The potential is endless for those who understand the opportunity.
Business Opportunity - Goldman Sachs, IBM and countless large corporations are leveraging open source to reduce costs, develop products and increase their bottom lines. Learn what these companies know about open source and how open source can give you the advantage.
Free Software provides computer programs and capabilities at no cost but more importantly, it provides the freedom to run, edit, contribute to, and share the software. The importance of free software is a matter of access, not price. Software at no cost is a benefit but ownership rights to the software and source code is far more significant.
Free Office Software - The Libre Office suite provides top desktop productivity tools for free. This includes, a word processor, spreadsheet, presentation engine, drawing and flowcharting, database and math applications. Libre Office is available for Linux or Windows.
The Free Books Library is a collection of thousands of the most popular public domain books in an online readable format. The collection includes great classical literature and more recent works where the U.S. copyright has expired. These books are yours to read and use without restrictions.
Source Code - Want to change a program or know how it works? Open Source provides the source code for its programs so that anyone can use, modify or learn how to write those programs themselves. Visit the GNU source code repositories to download the source.
Study at Harvard, Stanford or MIT - Open edX provides free online courses from Harvard, MIT, Columbia, UC Berkeley and other top Universities. Hundreds of courses for almost all major subjects and course levels. Open edx also offers some paid courses and selected certifications.
Linux Manual Pages - A man or manual page is a form of software documentation found on Linux/Unix operating systems. Topics covered include computer programs (including library and system calls), formal standards and conventions, and even abstract concepts.